Skip to main content
Log in

Ultraschallkontrastmittel — physikalische Grundlagen

Ultrasound contrast agents: physical basics

  • Ultraschallkontrastmittel
  • Published:
Der Radiologe Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2005

Zusammenfassung

Das Wirkungsprinzip von Ultraschallkontrastmitteln (US-KM, US Ultraschall) beruht auf den speziellen physikalischen und akustischen Eigenschaften der gasgefüllten Mikrobläschen. Abhängig vom Druck der eingestrahlten US-Welle treten neben einer Erhöhung der Rückstreuung, die wesentlich zur Verbesserung der Bildqualität beiträgt, nichtlineare Effekte auf, die von der Erzeugung harmonischer Frequenzanteile bis hin zur Zerstörung der Bläschen durch die Schallwelle reichen. Speziell die nichtlinearen Effekte bilden die Grundlage für neu entwickelte kontrastmittelspezifische Bildgebungstechniken wie harmonic oder intermittent imaging.

Dieser Artikel gibt eine Übersicht über die physikalischen Eigenschaften der Mikrobläschen, ihr akustisches Verhalten im Ultraschallfeld sowie die Ausnutzung der auftretenden Effekte für die Bildgebung. Auf neue Entwicklungen in Richtung gewebespezifischer Kontrastmittel und sich daraus ergebende therapeutische Anwendungsmöglichkeiten wird ebenso wie auf die potenziellen Gefahren durch kontrastmittelinduzierte Bioeffekte und daraus resultierenden Richtlinien für die klinische Anwendung der Kontrastmittel (KM) eingegangen.

Abstract

The concept of ultrasound contrast agents (UCA) is based on the inherent physical and acoustical properties of gas-filled microbubbles within an ultrasonic (US) field. Depending on the magnitude of the incident US wave different scattering behavior occurs. While it is linear for low acoustic pressures, increasing it leads to the occurrence of nonlinear effects, such as emission of harmonics. High pressure results in destruction of the bubbles producing a highly nonlinear echo signal. Using these specific acoustic signatures opens new perspectives for the development of bubble-specific imaging techniques such as harmonic or intermittent imaging.

This review deals with the physical properties of the gas-filled microbubbles, their behavior within an ultrasonic field, and the use of the bubbles’ acoustic signatures for contrast-specific imaging. Novel applications such as tissue-specific microbubbles, targeted imaging, and therapeutic applications using the bubbles as vehicles for drug or gene delivery are discussed as well as acoustically induced bioeffects and considerations for the safe use of UCA from an acoustic standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abbott J (1999) Rationale and derivation of MI and TI — a review. Ultrasound Med Biol 25:431–441

    Google Scholar 

  2. Albrecht T, Hohmann J (2004) Kontrastmittel in der Sonographie. Toshiba Visions 9, Kompendium, Toshiba Medical Systems Eigenverlag

  3. Becher H, Burns PN (2000) Handbook of contrast echocardiography. Springer, Berlin Heidelberg New York

  4. Bloch SH, Dayton PA, Ferrara KW (2004) Targeted imaging using ultrasound contrast agents. IEEE Eng Med Biol 23:18–29

    Google Scholar 

  5. Burns PN (1996) Harmonic imaging with ultrasound contrast agents. Clin Radiol 51 [Suppl 1]:50–55

    Google Scholar 

  6. Correas JM, Bridal L, Lesavere A et al. (2001) Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 11:1316–1328

    Article  CAS  PubMed  Google Scholar 

  7. Dayton P, Klibanov A, Brandenburger G, Ferrara K (1999) Acoustic radiation force in vivo: a mechanism to assist targeting of microbubles. Ultrasound Med Biol 25:1195–1201

    Google Scholar 

  8. De Jong N (1993) Acoustic properties of ultrasound contrast agents. PhD thesis. Erasmus University Rotterdam

  9. De Jong N, Bouakaz A, Ten Cate FJ (2002) Contrast harmonic imaging. Ultrasonics 40:567–573

    Google Scholar 

  10. Dijkmans PA, Juffermans LJM, Musters RJP, van Wamel A, ten Cate FJ, van Gilst W, Visser CA, de Jong N, Kamp O (2004) Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiography 5:245–256

    Google Scholar 

  11. EFSUMB Study Group (2004) Guidelines for the use of contrast agents in ultrasound. Ultraschall Med 25:249–256

    Google Scholar 

  12. Forsberg F, Goldberg B, Liu J, Merton DA, Rawool NM, Shi WT (1999) Tissue-specific US contrast agent for evaluation of hepatic and splenic parenchyma. Radiology 210:125–132

    Google Scholar 

  13. Frinking PJA, de Jong N, Cespedes EI (1999) Scattering properties of encapsulated gas bubbles at high pressures. J Acoust Soc Am 105:1989–1996

    Google Scholar 

  14. Frinking PJA, Bouakaz A, Kirkhorn J et al. (2000) Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol 26:965–975

    Google Scholar 

  15. Goldberg BB, Liu JB, Forsberg F (1994) Ultrasound contrast agents: a review. Ultrasound Med Biol 20:319–333

    Google Scholar 

  16. Gramiak R, Shah P (1968) Echocardiography of the aortic root. Invest Radiol 3:356–388

    CAS  PubMed  Google Scholar 

  17. Hetzel G (2003) Neue technische Entwicklungen auf dem Gebiet des Ultraschalls. Radiologe 43:777–792

    Article  CAS  PubMed  Google Scholar 

  18. Jenne J (2001) Kavitation in biologischem Gewebe. Ultraschall Med 22:200–207

    Google Scholar 

  19. Kawagishi T (2003) Technical description of 1.5 harmonic imaging, an effective technique for contrast-enhanced ultrasound diagnosis. e-medical review, Toshiba, pp 1–4

  20. Kollmann C (2004) Basic principles and physics of duplex and color Doppler imaging. In: Mostbeck (ed) Duplex and color Doppler imaging of the venous system, medical radiology, diagnostic imaging & radiation oncology. Springer, Berlin Heidelberg New York

  21. Lanza GM, Wickline SA (2001) Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 44:13–31

    Google Scholar 

  22. Leighton TG (1994) The acoustic bubble. Academic Press, New York

  23. Liang HD, Blomely MJK (2003) The role of ultrasound in molecular imaging. BJR 76:S140–150

    Google Scholar 

  24. Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Ley K, Kaul S (2000) Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 102:2745–2750

    Google Scholar 

  25. Miller AP, Nanda NC (2004) Contrast echocardiography: new agents. Ultrasound Med Biol 30:425–434

    Google Scholar 

  26. Morse PM, Ingard KV (1968) Theoretical acoustics. McGraw Hill, New York

  27. National Council on Radiation Protection and Measurements (NCRP) (2000) Exposure criteria for medical diagnostic ultrasound: II. criteria based on all known mechanisms, SC 66. Draft Report, Bethesda

    Google Scholar 

  28. Postema M, van Wamel A, Lancee CT et al. (2004) Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 30:827–840

    Article  PubMed  Google Scholar 

  29. Rosenfeld E (2003) Nicht-thermische, nicht-kavitative Wirkungen. Ultraschall Med 24:40–44

    Article  PubMed  Google Scholar 

  30. Schutt EG, Klein DH, Mattrey RM, Riess JG (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perflourchemicals. Angew Chem Int Ed 42:3218–3235

    Google Scholar 

  31. Szabo TL (2004) Diagnostic ultrasound imaging — inside out. Elsevier, Boston

  32. Ter Haar GR (2002) Ultrasonic contrast agents: safety considerations reviewed. Eur J Radiology 41:217–221

    Google Scholar 

  33. Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T (2001) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 44:45–54

    Google Scholar 

  34. Unger E, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, Quigley R (2002) Therapeutic applications of microbubbles. Eur J Radiol 42:160–168

    Google Scholar 

  35. Young FR (1999) Cavitation. Imperial College Press, London

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kollmann.

Additional information

Ein Erratum zu diesem Beitrag können Sie unter http://dx.doi.org/10.1007/s00117-005-1261-7 finden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollmann, C., Putzer, M. Ultraschallkontrastmittel — physikalische Grundlagen. Radiologe 45, 503–512 (2005). https://doi.org/10.1007/s00117-005-1188-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-005-1188-z

Schlüsselwörter

Keywords

Navigation