Skip to main content
Log in

Vaskuläre Bildgebung mittels kontrastverstärkter Sonographie in der experimentellen Anwendung

Vascular imaging with contrast-enhanced sonography for experimental use

  • Ultraschallkontrastmittel
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Möglichkeit des kontrastverstärkten Ultraschalls, Perfusion sensitiv zu detektieren, hat in medizinisch-biologischen, grundlagenorientierten Fragestellungen zu neuen Anwendungen geführt, die über die reine präklinische Evaluation dieser Techniken weit hinausgehen.

Es werden Methoden zur Visualisierung und Quantifizierung von Perfusion durch die kontrastverstärkte Sonographie erläutert und ein Überblick über bisherige Anwendungen dieser funktionellen Untersuchungen gegeben. Indikationen sind generell dann zu sehen, wenn Aussagen über die Gewebeperfusion mittels Ultraschall erforderlich sind, ein Thema, welches auch zunehmend klinisches Interesse gewinnt, z. B. in der Beurteilung der Myokard-, Hirn- oder Nierenperfusion oder im Therapiemonitoring. Dabei bieten unter den verschiedensten neuen Therapieverfahren, die am Tiermodell mittels Ultraschall im Verlauf untersucht wurden, insbesondere pro- oder antiangiogene Therapien vielversprechende Anwendungsgebiete für den kontrastverstärkten Ultraschall.

Abstract

The possibility of employing contrast-enhanced ultrasound for sensitive detection of perfusion has resulted in new forms of application in fundamental medical biological research that go far beyond mere preclinical evaluation of these techniques.

This contribution explains the methods for visualization and quantification of perfusion with contrast-enhanced sonography and provides an overview of how these functional examinations have been used to date. The procedure is generally considered indicated when information on tissue perfusion using ultrasound is required. This topic is also gaining increasing clinical interest, e.g., for assessment of myocardial, cerebral, and renal perfusion or for monitoring therapy. Among the various new treatment procedures that have been investigated in animal models with ultrasound, particularly proangiogenic and antiangiogenic therapy approaches proffer promising new fields for application of contrast-enhanced ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a–d
Abb. 2a, b
Abb. 3

Literatur

  1. Abdollahi A, Lipson KE, Sckell A et al. (2003) Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res 63 (24):8890–8898

    Google Scholar 

  2. Albrecht T, Hohmann J (2003) Ultrasound contrast agents. Radiologe 43 (10):793–804

    Article  CAS  PubMed  Google Scholar 

  3. Arger PH, Sehgal CM, Pugh CR et al. (1999) Evaluation of change in blood flow by contrast-enhanced power Doppler imaging during norepinephrine-induced renal vasoconstriction. J Ultrasound Med 18 (12):843–851

    Google Scholar 

  4. Becher H (2002) Contrast echocardiography: clinical applications and future prospects. Herz 27 (3):201–216

    Article  PubMed  Google Scholar 

  5. Boehm T, Malich A, Goldberg SN et al. (2002) Radio-frequency ablation of VX2 rabbit tumors: assessment of completeness of treatment by using contrast-enhanced harmonic power Doppler US. Radiology 225 (3):815–821

    Google Scholar 

  6. Brown JM, Chaloupka J, Taylor KJ et al. (1999) Contrast-enhanced ultrasound for guidance of local tumor ablation. Ultrasound Med Biol 25 (8):1213–1219

    Google Scholar 

  7. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407 (6801):249–257

    Article  Google Scholar 

  8. Claassen L, Seidel G, Algermissen C (2001) Quantification of flow rates using harmonic grey-scale imaging and an ultrasound contrast agent: an in vitro and in vivo study. Ultrasound Med Biol 27 (1):83–88

    Google Scholar 

  9. Claudon M, Barnevolt CE, Taylor GA et al. (1999) Renal blood flow in pigs: changes depicted with contrast-enhanced harmonic US-imaging during acute urinary obstruction. Radiology 212 (3):725–731

    Google Scholar 

  10. Correas JM, Claudon M, Tranquart F, Helenon O (2003) Contrast-enhanced ultrasonography: renal applications. J Radiol 84:2041–2054

    Google Scholar 

  11. Cosgrove D, Eckersley R, Blomley M, Harvey C (2001) Quantification of blood flow. Eur Radiol 11:1338–1344

    Google Scholar 

  12. Denis F, Bougnoux P, de Poncheville L et al. (2002) In vivo quantitation of tumour vascularisation assessed by Doppler sonography in rat mammary tumours. Ultrasound Med Biol 28 (4):431–437

    Google Scholar 

  13. Drevs J, Hofmann I, Hugenschmidt H et al. (2000) Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density and blood flow in a murine renal cell carcinoma model. Cancer Res 60 (17):4819–4824

    CAS  PubMed  Google Scholar 

  14. Ellegala DB, Leong-Poi H, Carpenter JE et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108 (3):336–341

    Google Scholar 

  15. Fein M, Delorme S, Weisser G, Zuna I, van Kaick G (1995) Quantification of color Doppler for the evaluation of tissue vascularization. Ultrasound Med Biol 21 (8):1013–1019

    Google Scholar 

  16. Fleischer AC, Wojcicki WE, Donelly EF et al. (1999) Quantified color Doppler sonography of tumor vascularity in an animal model. J Ultrasound Med 18 (8):547–551

    Google Scholar 

  17. Folkman J (2003) Angiogenesis inhibitors: a new class of drugs. Cancer Biol Ther 2:S127–133

    Google Scholar 

  18. Forsberg F, Goldberg BB, Liu JB et al. (1999) Tissue-specific US contrast agent for evaluation of hepatic and splenic parenchyma. Radiology 210 (1):125–132

    Google Scholar 

  19. Forsberg F, Dicker AP, Thakur ML et al. (2002) Comparing contrast-enhanced ultrasound to immunohistochemical markers of angiogenesis in a human melanoma xenograft model: preliminary results. Ultrasound Med Biol 28 (4):445–451

    Google Scholar 

  20. Forsberg F, Piccoli CW, Liu JB et al. (2002) Hepatic tumor detection: MR imaging and conventional US versus pulse-inversion harmonic US of NC100100 during its reticuloendothelial system-specific phase. Radiology 222 (3):824–829

    Google Scholar 

  21. Forsberg F, Rawool NM, Merton DA, Liu JB, Goldberg BB (2002) Contrast enhanced vascular three-dimensional ultrasound imaging. Ultrasonics 40 (1–8):117–122

    Google Scholar 

  22. Forsberg F, Ro RJ, Potoczek M et al. (2004) Assessment of angiogenesis: implications for ultrasound imaging. Ultrasonics 42 (1–9):325–330

    Google Scholar 

  23. Frauscher F, Klauser A, Berger AP et al. (2003) The value of ultrasound (US) in the diagnosis of prostate cancer. Radiologe 43 (6):455–463

    Google Scholar 

  24. Gee MS, Saunders HM, Lee JC et al. (2001) Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations. Cancer Res 61 (7):2974–2982

    Google Scholar 

  25. Girard MS, Kono Y, Sirlin CB et al. (2001) B-mode enhancement of the liver with microbubble contrast agent: a blinded study in rabbits with VX2 tumors. Acad Radiol 8 (8):734–740

    Google Scholar 

  26. Goertz DE, Yu JL, Kerbel RS et al. (2002) High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 62 (22):6371–6375

    Google Scholar 

  27. Hagen EK, Forsberg F, Aksnes AK et al. (2000) Enhanced detection of blood flow in the normal canine prostate using an ultrasound contrast agent. Invest Radiol 35 (2):118–124

    Google Scholar 

  28. Hetzel G (2003) Current developments in ultrasound technology. Radiologe 43 (10):777–792

    Article  CAS  PubMed  Google Scholar 

  29. Hlatky L, Hahnfeldt, P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94 (12):883–893

    Google Scholar 

  30. Iordanescu I, Becker C, Zetter B, Dunning P, Taylor GA (2002) Tumor vascularity: evaluation in amurine model with contrast-enhanced color Doppler US effect of angiogenesis inhibitors. Radiology 222 (2):460–467

    Google Scholar 

  31. Jansson T, Persson HW, Lindstrom K (1999) Estimation of blood perfusion using ultrasound. Proc Inst Mech Eng 213 (2):91–106

    Google Scholar 

  32. Jung EM, Clevert DA, Rupp N (2003) Contrast-enhanced ultrasound with optison in percutaneous thermoablation of liver tumors. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175 (10):1403–1412

    Article  Google Scholar 

  33. Kamotani Y, Lee WM, Arger PH, Cary TW, Sehgal CM (2003) Multigated contrast-enhanced power Doppler to measure blood flow in mice tumors. Ultrasound Med Biol 29 (7):977–984

    Google Scholar 

  34. Kiessling F, Krix M, Heilmann M et al. (2003) Comparing dynamic parameters of tumor vascularization in nude mice revealed by magnetic resonance imaging and contrast-enhanced intermittent power Doppler sonography. Invest Radiol 38 (8):516–524

    Article  PubMed  Google Scholar 

  35. Kiessling F, Farhan N, Lichy MP et al. (2004) Dynamic contrast-enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF receptor 2 blockade with DC101. Neoplasia 6 (3):213–223

    Google Scholar 

  36. Kinnaird T, Stabile E, Epstein SE, Fuchs S (2003) Current perspectives in therapeutic myocardial angiogenesis. J Interv Cardiol 16 (4):289–297

    Google Scholar 

  37. Klauser A, Frauscher F, Schirmer M et al. (2002) The value of contrast-enhanced color Doppler ultrasound in the detection of vascularization of finger joints in patients with rheumatoid arthritis. Arthritis Rheum 46 (3):647–653

    Google Scholar 

  38. Kondo I, Ohmori K, Oshita A et al. (2004) Leukocyte-targeted myocardial contrast echocardiography can assess the degree of acute allograft rejection in a rat cardiac transplantation model. Circulation 109 (8):1056–1061

    Google Scholar 

  39. Krix M, Kiessling F, Vosseler S et al. (2003) Comparison of intermittent, bolus-contrast imaging with conventional power Doppler sonography: quantification of tumour perfusion in small animals. Ultrasound Med Biol 29 (8):1093–1103

    Google Scholar 

  40. Krix M, Kiessling F, Farhan N et al. (2003) A new multivessel model describing replenishment kinetics of ultrasound contrast agent for quantification of tissue perfusion. Ultrasound Med Biol 29 (10):1421–1430

    Google Scholar 

  41. Krix M, Kauczor HU, Delorme S (2003) Quantification of tissue perfusion with novel ultrasound methods. Radiologe 43 (10):823–830

    Article  CAS  PubMed  Google Scholar 

  42. Krix M, Kiessling F, Vosseler S et al. (2003) Sensitive non-invasive monitoring of tumor perfusion during antiangiogenic therapy by intermittent, bolus-contrast power Doppler sonography. Cancer Res 63 (23):8264–8270

    Google Scholar 

  43. Krix M, Plathow C, Kiessling F et al. (2004) Quantification of perfusion of liver tissue and metastases using a multi-vessel model for replenishment kinetics of ultrasound contrast agents. Ultrasound Med Biol 30 (10):1355–1363

    Google Scholar 

  44. Lassau N, Koscielny S, Opolon P et al. (2001) Evaluation of contrast-enhanced color Doppler ultrasound for the quantification of angiogenesis in vivo. Invest Radiol 36 (1):50–55

    Google Scholar 

  45. Lencioni R, Cioni D, Bartolozzi C (2002) Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound. Eur Radiol 12 (1):151–165

    PubMed  Google Scholar 

  46. Liu JB, Goldberg BB, Merton DA et al. (2001) The role of contrast-enhanced sonography for radiofrequency ablation of liver tumors. J Ultrasound Med 20 (5):517–523

    CAS  PubMed  Google Scholar 

  47. Lucidarme O, Franchi-Abella S, Correas JM, Bridal SL, Kurtisovski E, Berger G (2003) Blood flow quantification with contrast-enhanced US: „entrance in the section“ phenomenon — phantom and rabbit study. Radiology 228 (2):473–479

    Google Scholar 

  48. Mor-Avi V, Caiani EG, Collins et al. (2001) Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation 104 (3):352–357

    Google Scholar 

  49. Neeman M (2000) Preclinical MRI experience in imaging angiogenesis. Cancer Metastasis Rev 19 (1–2):39–43

    Google Scholar 

  50. Phillips PJ (2001) Contrast pulse sequences (CPS): imaging nonlinear microbubbles. IEEE Ultrasonics Symposium pp 1739–1745

  51. Phillips P, Gardner E (2004) Contrast-agent detection and quantification. Eur Radiol 14 [Suppl 8]:4–10

    Google Scholar 

  52. Pollard RE, Sadlowski AR, Bloch SH et al. (2002) Contrast-assisted destruction-replenishment ultrasound for the assessment of tumor microvasculature in a rat model. Technol Cancer Res Treat 1 (6):459–470

    Google Scholar 

  53. Porter TR, Xie F (1995) Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles. Demonstration and potential mechanisms. Circulation 92 (9):2391–2395

    Google Scholar 

  54. Rim SJ, Leong-Poi H, Lindner JR et al. (2001) Quantification of cerebral perfusion with „Real-Time“ contrast-enhanced ultrasound. Circulation 104 (21):2582–2587

    Google Scholar 

  55. Schroeder R, Hauff P, Bartels T et al. (2001) Tumor vascularization in experimental melanomas: correlation between unenhanced and contrast enhanced power doppler imaging and histological findings. Ultrasound Med Biol 27 (6):761–771

    Google Scholar 

  56. Seidel G, Algermissen C, Christoph A, Katzer T, Kaps M (2000) Visualization of brain perfusion with harmonic gray scale and power doppler technology: an animal pilot study. Stroke 31 (7):1728–1734

    CAS  PubMed  Google Scholar 

  57. Sieswerda GT, Kamp O, Visser CA (2000) Myocardial contrast echocardiography: clinical benefit and practical issues. Echocardiography 17:S25–36

    Google Scholar 

  58. Tang J, Li S, Li J et al. (2003) Evaluation of the effect of protamine on human prostate carcinoma PC-3m using contrast enhanced Doppler ultrasound. J Urol 170:611–614

    Google Scholar 

  59. Taylor GA, Barnewolt CE, Dunning PS (1998) Excitotoxin-induced cerebral hyperemia in newborn piglets: regional cerebral blood flow mapping with contrast-enhanced power Doppler US. Radiology 208 (1):73–79

    Google Scholar 

  60. Ugolini P, Delouche A, Herment A, Diebold B (2000) In vitro flow quantification with contrast power Doppler imaging. Ultrasound Med Biol 26 (1):113–120

    Google Scholar 

  61. Unger EC, Hersh E, Vannan M, McCreery T (2001) Gene delivery using ultrasound contrast agents. Echocardiography 18 (4):355–361

    Google Scholar 

  62. Villanueva FS, Abraham JA, Schreiner GF et al. (2002) Myocardial contrast echocardiography can be used to assess the microvascular response to vascular endothelial growth factor-121. Circulation 105 (6):759–765

    Google Scholar 

  63. Wei K, Jayaweera AR, Firoozan S et al. (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483

    Google Scholar 

  64. Wei K, Le E, Bin JP et al. (2001) Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol 37 (4):1135–1140

    Google Scholar 

  65. Weller GE, Lu E, Csikari MM et al. (2003) Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation 108 (2):218–224

    Google Scholar 

  66. Wiesmann M, Meyer K, Albers T, Seidel G (2004) Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke. Stroke 35 (2):508–513

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krix, M., Kauczor, HU. & Delorme, S. Vaskuläre Bildgebung mittels kontrastverstärkter Sonographie in der experimentellen Anwendung. Radiologe 45, 552–559 (2005). https://doi.org/10.1007/s00117-005-1186-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-005-1186-1

Schlüsselwörter

Keywords

Navigation