Skip to main content

Zehn Jahre funktionelle Magnetresonanztomographie in der Schizophrenieforschung

Von der Abbildung einfacher Informationsverarbeitungsprozesse zur molekulargenetisch orientierten Bildgebung

One decade of functional imaging in schizophrenia research

From visualisation of basic information processing steps to molecular brain imaging

Zusammenfassung

Bildgebende Verfahren wie die Magnetresonanz- und Positronenemissionstomographie haben entscheidend dazu beigetragen, dass psychiatrische Erkrankungen heutzutage im Kontext funktioneller, biochemischer und feinstruktureller Veränderungen des Gehirns verstanden werden. Im Bereich der Schizophrenieforschung gibt insbesondere die funktionelle Magnetresonanztomographie seit Mitte der 90er-Jahre wichtige Einblicke in die neurobiologischen Grundlagen schizophrener Defizitbereiche. Die vorliegende Arbeit stellt die wichtigsten fMRT-Befunde der letzten Dekade in den Bereichen Psychomotorik, visuelle bzw. akustische Informationsverarbeitung, Aufmerksamkeit und Arbeitsgedächtnis vor. Die Betrachtung erfolgt dabei unter der besonderen Berücksichtigung aktueller methodischer Ansätze wie der Darstellung von Therapieeffekten und der funktionellen Charakterisierung psychiatrischer Risikogene.

Abstract

Modern neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have contributed tremendously to our current understanding of psychiatric disorders in the context of functional, biochemical and microstructural alterations of the brain. Since the mid-nineties, functional MRI has provided major insights into the neurobiological correlates of signs and symptoms in schizophrenia. The current paper reviews important fMRI studies of the past decade in the domains of motor, visual, auditory, attentional and working memory function. Special emphasis is given to new methodological approaches, such as the visualisation of medication effects and the functional characterisation of risk genes.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S, Mayberg H (2004) Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 61:34–41

    Article  PubMed  Google Scholar 

  2. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    CAS  PubMed  Google Scholar 

  3. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271

    Article  Google Scholar 

  4. Schroeder J, Niethammer R, Geider FJ, Reitz C, Binkert M, Jauss M, Sauer H (1991) Neurological soft signs in schizophrenia. Schizophr Res 6:25–30

    Article  Google Scholar 

  5. Vrtunski PB, Simpson DM, Weiss KM, Davis GC (1986) Abnormalities of fine motor control in schizophrenia. Psychiatry Res 18:275–284

    Article  Google Scholar 

  6. Wenz F, Schad LR, Knopp MV, Baudendistel KT, Flomer F, Schroder J, van Kaick G (1994) Functional magnetic resonance imaging at 1.5 T: activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imaging 12:975–982

    Article  Google Scholar 

  7. Schröder J, Wenz F, Schad LR, Baudendistel K, Knopp MV (1995) Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. Br J Psychiatry 167:197–201

    Google Scholar 

  8. Buckley PF, Friedman L, Wu D, Lai S, Meltzer HY, Haacke EM, Miller D, Lewin JS (1997) Functional magnetic resonance imaging in schizophrenia: Initial methodology and evaluation of the motor cortex. Psychiatry Res Neuroimaging 74:13–23

    Article  Google Scholar 

  9. Braus DF, Ende G, Weber-Fahr W, Sartorius A, Krier A, Hubrich-Ungureanu P, Ruf M, Stuck S, Henn FA (1999) Antipsychotic drug effects on motor activation measured by functional magnetic resonance imaging in schizophrenic patients. Schizophr Res 39:19–29

    Article  Google Scholar 

  10. Schröder J, Essig M, Baudendistel K, Jahn T, Gerdsen I, Stockert A, Schad LR, Knopp MV (1999) Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: A study with functional magnetic resonance imaging. Neuroimage 9:81–87

    Article  Google Scholar 

  11. Rogowska J, Gruber SA, Yurgelun-Todd DA (2004) Functional magnetic resonance imaging in schizophrenia: cortical response to motor stimulation. Psychiatry Res Neuroimaging 130:227–243

    Article  Google Scholar 

  12. Bertolino A, Blasi G, Caforio G, Latorre V, De Candia M, Rubino V, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M (2004) Functional lateralization of the sensorimotor cortex in patients with schizophrenia: effects of treatment with olanzapine. Biol Psychiatry 56:190–197

    Article  Google Scholar 

  13. Mattay VS, Callicott JH, Bertolino A, Santha AK, Tallent KA, Goldberg TE, Frank JA, Weinberger DR (1997) Abnormal functional lateralization of the sensorimotor cortex in patients with schizophrenia. Neuroreport 8:2977–2984

    Google Scholar 

  14. Braus DF, Ende G, Tost H, Weber-Fahr W, Jatzko A, Schmitt A, Demirakca T, Ruf M (2000) Funktionelle Kernspintomographie und Schizophrenie: Medikamenteneffekte, methodische Grenzen und Perspektiven. Nervenheilkunde 3:121–128

    Google Scholar 

  15. Braff DL, Saccuzzo DP (1981) Information processing dysfunction in paranoid schizophrenia: a two- factor deficit. Am J Psychiatry 138:1051–1056

    CAS  PubMed  Google Scholar 

  16. Braff DL, Saccuzzo DP (1985) The time course of information-processing deficits in schizophrenia. Am J Psychiatry 142:170–174

    CAS  PubMed  Google Scholar 

  17. Keri S, Antal A, Szekeres G, Benedek G, Janka Z (2000) Visual information processing in patients with schizophrenia: evidence for the impairment of central mechanisms. Neurosci Lett 293:69–71

    Article  CAS  PubMed  Google Scholar 

  18. Moritz S, Ruff C, Wilke U, Andresen B, Krausz M, Naber D (2001) Negative priming in schizophrenia: effects of masking and prime presentation time. Schizophr Res 48:291–299

    Article  Google Scholar 

  19. Chen Y, Levy DL, Nakayama K, Matthysse S, Palafox G, Holzman PS (1999) Dependence of impaired eye tracking on deficient velocity discrimination in schizophrenia. Arch Gen Psychiatry 56:155–161

    Article  Google Scholar 

  20. Chen Y, Nakayama K, Levy DL, Matthysse S, Holzman PS (1999) Psychophysical isolation of a motion-processing deficit in schizophrenics and their relatives and its association with impaired smooth pursuit. Proc Natl Acad Sci USA 96:4724–4729

    Article  Google Scholar 

  21. Chen Y, Palafox GP, Nakayama K, Levy DL, Matthysse S, Holzman PS (1999) Motion perception in schizophrenia. Arch Gen Psychiatry 56:149–154

    Article  Google Scholar 

  22. Green MF, Nuechterlein KH, Breitmeyer B (1997) Backward masking performance in unaffected siblings of schizophrenic patients. Evidence for a vulnerability indicator. Arch Gen Psychiatry 54:465–472

    CAS  PubMed  Google Scholar 

  23. Schwartz BD, Maron BA, Evans WJ, Winstead DK (1999) High velocity transient visual processing deficits diminish ability of patients with schizophrenia to recognize objects. Neuropsychiatry Neuropsychol Behav Neurol 12:170–177

    Google Scholar 

  24. Cadenhead KS, Serper Y, Braff DL (1998) Transient versus sustained visual channels in the visual backward masking deficits of schizophrenia patients. Biol Psychiatry 43:132–138

    Article  CAS  PubMed  Google Scholar 

  25. O’Donnell BF, Swearer JM, Smith LT, Nestor PG, Shenton ME, McCarley RW (1996) Selective deficits in visual perception and recognition in schizophrenia. Am J Psychiatry 153: 687–692

    Google Scholar 

  26. Ungerleider LG, Courtney SM, Haxby JV (1998) A neural system for human visual working memory. Proc Natl Acad Sci USA 95:883–890

    Article  Google Scholar 

  27. Ungerleider LG, Mishkin M. Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJ (Hrsg) Analysis of visual behavior. Cambridge, MA: MIT Press, 1982:549–586

  28. Levin S (1984) Frontal lobe dysfunctions in schizophrenia--II. Impairments of psychological and brain functions. J Psychiatr Res 18:57–72

    Article  CAS  PubMed  Google Scholar 

  29. Levin S (1984) Frontal lobe dysfunctions in schizophrenia--I. Eye movement impairments. J Psychiatr Res 18:27–55

    Article  Google Scholar 

  30. Tek C, Gold J, Blaxton T, Wilk C, McMahon RP, Buchanan RW (2002) Visual perceptual and working memory impairments in schizophrenia. Arch Gen Psychiatry 59:146–153

    Article  Google Scholar 

  31. Stuve TA, Friedman L, Jesberger JA, Gilmore GC, Strauss ME, Meltzer HY (1997) The relationship between smooth pursuit performance, motion perception and sustained visual attention in patients with schizophrenia and normal controls. Psychol Med 27:143–152

    Article  Google Scholar 

  32. Braus DF, Weber-Fahr W, Tost H, Ruf M, Henn FA (2002) Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: a functional magnetic resonance imaging study. Arch Gen Psychiatry 59:696–701

    Article  Google Scholar 

  33. Tost H, Brassen S, Schmitt A, Vollmert C, Jatzko A, Ruf M, Wendt CS, Braus DF (2003) Passive visual motion processing in schizophrenic patients: a fMRI study. Neuroimage 19:1584

    Google Scholar 

  34. Tost H, Schmitt A, Brassen S, Ruf M, Vollmert C, Weimer E, Wendt CS, Braus DF (2003) Discrimination of large and small velocity differences in healthy subjects: an fMRI study. Neuroimage 19:1535

    Google Scholar 

  35. Tost H, Wolf I, Brassen S, Ruf M, Schmitt A, Braus DF (2004) Visual motion processing dysfunction in schizophrenia: a „bottom up“ or „top down“ deficit? Neuroimage 22: TU 374

    Google Scholar 

  36. Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–761

    Article  Google Scholar 

  37. Kastner S, De Weerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–111

    Article  CAS  PubMed  Google Scholar 

  38. Barta PE, Pearlson GD, Powers RE, Richards SS, Tune LE (1990) Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. Am J Psychiatry 147:1457–1462

    Google Scholar 

  39. Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature 378:176–179

    Article  Google Scholar 

  40. McGuire PK, Shah GM, Murray RM (1993) Increased blood flow in Broca’s area during auditory hallucinations in schizophrenia. Lancet 342:703–706

    Article  Google Scholar 

  41. McGuire PK, Silbersweig DA, Wright I, Murray RM, David AS, Frackowiak RS, Frith CD (1995) Abnormal monitoring of inner speech: a physiological basis for auditory hallucinations. Lancet 346:596–600

    Article  Google Scholar 

  42. Woodruff P, Brammer M, Mellers J, Wright I, Bullmore E, Williams S (1995) Auditory hallucinations and perception of external speech. Lancet 346:1035

    Article  Google Scholar 

  43. Woodruff PW, Wright IC, Bullmore ET, Brammer M, Howard RJ, Williams SC, Shapleske J, Rossell S, David AS, McGuire PK, Murray RM (1997) Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study. Am J Psychiatry 154:1676–1682

    Google Scholar 

  44. Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, Singer W (1999) Activation of Heschl’s gyrus during auditory hallucinations. Neuron 22:615–621

    Article  Google Scholar 

  45. Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC (2002) Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry 51:1008–1011

    Article  Google Scholar 

  46. Gaser C, Nenadic I, Volz HP, Buchel C, Sauer H (2004) Neuroanatomy of ‚hearing voices’: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia. Cereb Cortex 14:91–96

    Article  Google Scholar 

  47. Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, Maier SE, Schroth G, Lovblad K, Dierks T (2004) Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry 61:658–668

    Article  Google Scholar 

  48. Wible CG, Kubicki M, Yoo SS, Kacher DF, Salisbury DF, Anderson MC, Shenton ME, Hirayasu Y, Kikinis R, Jolesz FA, McCarley RW (2001) A functional magnetic resonance imaging study of auditory mismatch in schizophrenia. Am J Psychiatry 158:938–943

    Google Scholar 

  49. David AS, Woodruff PW, Howard R, Mellers JD, Brammer M, Bullmore E, Wright I, Andrew C, Williams SC (1996) Auditory hallucinations inhibit exogenous activation of auditory association cortex. Neuroreport 7:932–936

    Google Scholar 

  50. Gold JM, Thaker GK (2002) Current progress in schizophrenia research. Cognitive phenotypes of schizophrenia: attention. J Nerv Ment Dis 190:638–639

    Article  Google Scholar 

  51. Cornblatt BA, Malhotra AK (2001) Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. Am J Med Genet 105:11–15

    Google Scholar 

  52. Egan MF, Goldberg TE, Gscheidle T, Weirich M, Bigelow LB, Weinberger DR (2000) Relative risk of attention deficits in siblings of patients with schizophrenia. Am J Psychiatry 157:1309–1316

    Article  Google Scholar 

  53. Siegel BV Jr, Nuechterlein KH, Abel L, Wu JC, Buchsbaum MS (1995) Glucose metabolic correlates of continuous performance test performance in adults with a history of infantile autism, schizophrenics, and controls. Schizophr Res 17:85–94

    Article  Google Scholar 

  54. MacDonald AW 3rd, Carter CS (2003) Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia. J Abnorm Psychol 112:689–697

    Article  Google Scholar 

  55. Volz H, Gaser C, Hager F, Rzanny R, Ponisch J, Mentzel H, Kaiser WA, Sauer H (1999) Decreased frontal activation in schizophrenics during stimulation with the continuous performance test--a functional magnetic resonance imaging study. Eur Psychiatry 14:17–24

    Article  Google Scholar 

  56. Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A 3rd, Noll DC, Cohen JD (2001) Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry 58:280–288

    Article  CAS  PubMed  Google Scholar 

  57. Eyler LT, Olsen RK, Jeste DV, Brown GG (2004) Abnormal brain response of chronic schizophrenia patients despite normal performance during a visual vigilance task. Psychiatry Res Neuroimaging 130:245–257

    Article  Google Scholar 

  58. Cohen JD, Botvinick M, Carter CS (2000) Anterior cingulate and prefrontal cortex: who’s in control? Nat Neurosci 3:421–423

    Article  Google Scholar 

  59. Carter CS, Mintun M, Nichols T, Cohen JD (1997) Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. Am J Psychiatry 154:1670–1675

    Google Scholar 

  60. Yücel M, Pantelis C, Stuart GW, Wood SJ, Maruff P, Velakoulis D, Pipingas A, Crowe SF, Tochon-Danguy HJ, Egan GF (2002) Anterior cingulate activation during Stroop task performance: a PET to MRI coregistration study of individual patients with schizophrenia. Am J Psychiatry 159:251–254

    Article  Google Scholar 

  61. Carter CS, Botvinick MM, Cohen JD (1999) The contribution of the anterior cingulate cortex to executive processes in cognition. Rev Neurosci 10:49–57

    Google Scholar 

  62. Carter CS, MacDonald AW 3rd, Ross LL, Stenger VA (2001) Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am J Psychiatry 158:1423–1428

    Article  Google Scholar 

  63. Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46:312–328

    Article  CAS  PubMed  Google Scholar 

  64. Heckers S, Weiss AP, Deckersbach T, Goff DC, Morecraft RJ, Bush G (2004) Anterior cingulate cortex activation during cognitive interference in schizophrenia. Am J Psychiatry 161:707–715

    Article  Google Scholar 

  65. Sun Z, Wang F, Cui L, Breeze J, Du X, Wang X, Cong Z, Zhang H, Li B, Hong N, Zhang D (2003) Abnormal anterior cingulum in patients with schizophrenia: a diffusion tensor imaging study. Neuroreport 14:1833–1836

    Article  Google Scholar 

  66. Kubicki M, Westin CF, Nestor PG, Wible CG, Frumin M, Maier SE, Kikinis R, Jolesz FA, McCarley RW, Shenton ME (2003) Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol Psychiatry 54:1171–1180

    Article  Google Scholar 

  67. Weiss EM, Golaszewski S, Mottaghy FM, Hofer A, Hausmann A, Kemmler G, Kremser C, Brinkhoff C, Felber SR, Wolfgang Fleischhacker W (2003) Brain activtion patterns during a selective attention test—a functional MRI study in healthy volunteers and patients with schizophrenia. Psychiatry Res 123:1–15

    Google Scholar 

  68. Silver H, Feldman P, Bilker W, Gur RC (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160:1809–1816

    Article  PubMed  Google Scholar 

  69. Glahn DC, Cannon TD, Gur RE, Ragland JD, Gur RC (2000) Working memory constrains abstraction in schizophrenia. Biol Psychiatry 47:34–42

    Article  Google Scholar 

  70. Gold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR (1997) Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry 54:159–165

    Google Scholar 

  71. Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357

    Google Scholar 

  72. Honey GD, Bullmore ET, Sharma T (2002) De-coupling of cognitive performance and cerebral functional response during working memory in schizophrenia. Schizophr Res 53:45–56

    Article  Google Scholar 

  73. Berman KF, Illowsky BP, Weinberger DR (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. IV. Further evidence for regional and behavioral specificity. Arch Gen Psychiatry 45:616–622

    Google Scholar 

  74. Stevens AA, Goldman-Rakic PS, Gore JC, Fulbright RK, Wexler BE (1998) Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic resonance imaging. Arch Gen Psychiatry 55:1097–1103

    Article  Google Scholar 

  75. Thermenos HW, Seidman LJ, Breiter H, Goldstein JM, Poldrack R, Faraone SV, Tsuang MT (2004) Functional magnetic resonance imaging during auditory verbal working memory in nonpsychotic relatives of persons with schizophrenia. Biol Psychiatry 55:490–500

    Article  Google Scholar 

  76. Spindler KA, Sullivan EV, Menon V, Lim KO, Pfefferbaum A (1997) Deficits in multiple systems of working memory in schizophrenia. Schizophr Res 27:1-10

    Article  Google Scholar 

  77. Callicott J, Egan MF, Mattay V, Bertolino A, Bone AD, Verchinski BA, Weinberger DR (2004) Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 160:709–719

    Article  Google Scholar 

  78. Paulman RG, Devous MD Sr, Gregory RR, Herman JH, Jennings L, Bonte FJ, Nasrallah HA, Raese JD (1990) Hypofrontality and cognitive impairment in schizophrenia: dynamic single-photon tomography and neuropsychological assessment of schizophrenic brain function. Biol Psychiatry 27:377–399

    Article  Google Scholar 

  79. Andreasen NC, O’Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, Hichwa RD (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 349:1730–1734

    Article  CAS  PubMed  Google Scholar 

  80. Ramsey NF, Koning HA, Welles P, Cahn W, van der Linden JA, Kahn RS (2002) Excessive recruitment of neural systems subserving logical reasoning in schizophrenia. Brain 125:1793–1807

    Article  Google Scholar 

  81. Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48:99–109

    Article  Google Scholar 

  82. Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Saper CB, Warach S (1999) Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 45:1128–1137

    Article  Google Scholar 

  83. Callicott J, Mattay V, Verchinski BA, Marenco S, Egan MF, Weinberger DR (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160:2209–2215

    Article  Google Scholar 

  84. Goldman-Rakic PS, Muly EC, 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31:295–301

    Article  Google Scholar 

  85. Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA, Goldberg TE, Weinberger DR (1999) Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex 9:20–26

    Article  Google Scholar 

  86. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, Goldberg TE, Weinberger DR (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092

    Article  Google Scholar 

  87. Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60:285–298

    Article  Google Scholar 

  88. Jansma JM, Ramsey NF, van der Wee NJ, Kahn RS (2004) Working memory constraints in schizoprenia: a parametric fMRI study. Schizophr Res 68:159–171

    Article  Google Scholar 

  89. Meltzer HY, Lee MA, Ranjan R (1994) Recent advances in the pharmacotherapy of schizophrenia. Acta Psychiatr Scand Suppl 384:95–101

    Google Scholar 

  90. Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    CAS  PubMed  Google Scholar 

  91. Nestor PG, Faux SF, McCarley RW, Sands SF, Horvath TB, Peterson A (1991) Neuroleptics improve sustained attention in schizophrenia. A study using signal detection theory. Neuropsychopharmacology 4:145–149

    Google Scholar 

  92. Lieberman JA, Safferman AZ, Pollack S, Szymanski S, Johns C, Howard A, Kronig M, Bookstein P, Kane JM (1994) Clinical effects of clozapine in chronic schizophrenia: response to treatment and predictors of outcome. Am J Psychiatry 151:1744–1752

    CAS  PubMed  Google Scholar 

  93. Zahn TP, Pickar D, Haier RJ (1994) Effects of clozapine, fluphenazine, and placebo on reaction time measures of attention and sensory dominance in schizophrenia. Schizophr Res 13:133–144

    Article  Google Scholar 

  94. Heitmiller DR, Nopoulos PC, Andreasen NC (2004) Changes in caudate volume after exposure to atypical neuroleptics in patients with schizophrenia may be sex-dependent. Schizophr Res 66:137–142

    Article  Google Scholar 

  95. Arango C, Breier A, McMahon R, Carpenter WT, Buchanan RW (2003) The relationship of clozapine and haloperidol treatment response to prefrontal, hippocampal and caudate brain volumes. Am J Psychiatry 160:1421–1427

    Article  Google Scholar 

  96. Bertolino A, Callicott JH, Mattay VS, Weidenhammer KM, Rakow R, Egan MF, Weinberger DR (2001) The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 49:39–46

    Article  Google Scholar 

  97. Braus DF, Ende G, Weber-Fahr W, Demirakca T, Henn FA (2001) Favorable effect on neuronal viability in the anterior cingulate gyrus due to long-term treatment with atypical antipsychotics: an MRSI study. Pharmacopsychiatry 34:251–253

    Google Scholar 

  98. Ende G, Braus DF, Walter S, Weber-Fahr W, Soher B, Maudsley AA, Henn FA (2000) Effects of age, medication, and illness duration on the N-acetyl aspartate signal of the anterior cingulate region in schizophrenia. Schizophr Res 41:389–395

    Article  Google Scholar 

  99. Stephan KE, Magnotta VA, White T, Arndt S, Flaum M, O’Leary DS, Andreasen NC (2001) Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychol Med 31:1065–1078

    Article  Google Scholar 

  100. Braus DF, Ende G, Weber-Fahr W, Tost H, Demirakca T, Schmitt A, Henn FA (2000) Neuroleptika und einfache Informationsverarbeitungsprozesse. Psycho 26:97–101

    Google Scholar 

  101. Braus DF, Ende G, Hubrich-Ungureanu P, Henn FA (2000) Cortical response to motor stimulation in neuroleptic-naive first episode schizophrenics. Psychiatry Res 98:145–154

    Google Scholar 

  102. Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci USA 96:13432–13437

    Article  Google Scholar 

  103. Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V, Altamura M, Nappi G, Papa S, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M (2004) Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 161:1798–1805

    Article  Google Scholar 

  104. Gould TD, Husseini KM (2004) The molecular medicine revolution and psychiatry: bridging the gap between basic neuroscience research and clinical psychiatry. J Clin Psychiatry 65:598–604

    Google Scholar 

  105. Harrison PJ, Weinberger DR (2004) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry

  106. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004) Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT): Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain. Am J Hum Genet 75:807–821

    Article  Google Scholar 

  107. Hariri AR, Weinberger DR (2003) Imaging genomics. Br Med Bulletin 65:259–270

    Article  Google Scholar 

  108. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde T, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinmann JE, Weinberger DR (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schiophrenia. PNAS 101:12604–12609

    Article  Google Scholar 

  109. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6922

    Article  CAS  PubMed  Google Scholar 

  110. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS, Goldman D, Weinberger DR (2003) Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 60:889–896

    Article  CAS  PubMed  Google Scholar 

  111. Bilder RM, Volavka J, Lachman HM, Grace AA (2004) The catechol-o-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29:1943–1961

    Article  Google Scholar 

  112. Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Koeppe RA, Stohler CS, Goldman D (2003) COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 299:1240–1243

    Article  CAS  PubMed  Google Scholar 

  113. Tiihonen J, Hallikainen T, Lachman H, Saito T, Volavka J, Kauhanen J, Salonen JT, Ryynanen OP, Koulu M, Karvonen MK, Pohjalainen T, Syvalahti E, Hietala J (1999) Association between the functional variant of the catechol-O-methyltransferase (COMT) gene and type 1 alcoholism. Mol Psychiatry 4:286–289

    Article  Google Scholar 

  114. Menon V, Anagnoson RT, Glover GH, Pfefferbaum A (2001) Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia. Am J Psychiatry 158:646–649

    Article  Google Scholar 

  115. Schlosser R, Gesierich T, Kaufmann B, Vucurevic G, Hunsche S, Gawehn J, Stoeter P (2003) Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage 19:751–763

    Article  Google Scholar 

  116. Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, Coppola R, Goldberg T, Gelderen P van, Mattay VS, Frank JA, Moonen CT, Weinberger DR (1998) Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology 18:186–196

    Article  Google Scholar 

  117. Volz HP, Gaser C, Hager F, Rzanny R, Mentzel HJ, Kreitschmann-Andermahr I, Kaiser WA, Sauer H (1997) Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test - a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 75:145–157

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tost.

Additional information

* Disclaimer: the views expressed by this author do not necessarily represent those of NIMH or NIH or the Federal Government

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tost, H., Meyer-Lindenberg*, A., Ruf, M. et al. Zehn Jahre funktionelle Magnetresonanztomographie in der Schizophrenieforschung. Radiologe 45, 113–123 (2005). https://doi.org/10.1007/s00117-004-1154-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1154-1

Schlüsselwörter

  • Funktionelle Magnetresonanztomographie
  • Schizophrenie
  • Arbeitsgedächtnis
  • Molekulargenetisch orientierte Bildgebung

Keywords

  • Functional magnetic resonance imaging
  • Schizophrenia
  • Working memory
  • Molecular brain imaging