Skip to main content
Log in

1H-Magnetresonanzspektroskopie (MRS) der Leber und von Lebermalignomen bei 3,0 Tesla

1H magnetic resonance spectroscopy (MRS) of the liver and hepatic malignant tumors at 3.0 Tesla

  • Leberdiagnostik, Teil 1
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Mit dem Einsatz der Ganzkörper-MRT jenseits der 1,5 Tesla (T) erleben spektroskopische Verfahren (MRS) eine Renaissance. Das überlegene Signal-zu-Rausch-Verhalten klinischer 3-T-Tomographen erlaubt die zuverlässige Akquisition von MR-Spektren nicht nur in fixierten Organen, sondern auch in atembewegten Zielen wie der Leber. Im Folgenden werden die Prinzipien der 1H-MRS und erste eigene Erfahrungen bei Leber- und Lebermalignomspektroskopie an einem 3-T-Ganzkörper-MRT beschrieben.

Abstract

Use of whole-body MRI beyond 1.5 Tesla (T) has initiated a renaissance in spectroscopic procedures (MRS). The superior signal-to-noise ratio of clinical 3T tomographs allows reliable acquisition of MR spectra not only in fixed organs but also in targets moved by breathing such as the liver. The following contribution describes the principles of 1H MRS and our own initial experiences with spectroscopy of the liver and hepatic malignant tumors with 3T whole-body MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a–c

Literatur

  1. Bachert P, Lichy MP (2004) Magnetic resonance spectroscopy. Part 2: application in diagnosis and clinical research. Radiologe 44:81–95

    Article  CAS  PubMed  Google Scholar 

  2. Bailes DR, Gilderdale DJ, Bydder GM, Collins AG, Firmin DN (1985) Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artefacts in MR imaging. J Comput Assist Tomogr 9:835–838

    CAS  PubMed  Google Scholar 

  3. Barany M, Spigos DG, Mok E, Venkatasubramanian PN, Wilbur AC, Langer BG (1987) High resolution proton magnetic resonance spectroscopy of human brain and liver. Magn Reson Imaging 5:393–398

    Article  CAS  PubMed  Google Scholar 

  4. Barany M, Langer BG, Glick RP, Venkatasubramanian PN, Wilbur AC, Spigos DG (1988) In vivo H-1 spectroscopy in humans at 1.5 T. Radiology 167:839–844

    CAS  PubMed  Google Scholar 

  5. Bell JD, Cox IJ, Sargentoni J, Peden CJ, Menon DK, Foster CS, Watanapa P, Iles RA, Urenjak J (1993) A 31P and 1H-NMR investigation in vitro of normal and abnormal human liver. Biochim Biophys Acta 1225:71–77

    Article  CAS  PubMed  Google Scholar 

  6. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 79:3523–3526

    CAS  PubMed  Google Scholar 

  7. Cho SG, Kim MY, Kim HJ, Kim YS, Choi W, Shin SH, Hong KC, Kim YB, Lee JH, Suh CH (2001) Chronic hepatitis: in vivo proton MR spectroscopic evaluation of the liver and correlation with histopathologic findings. Radiology 221:740–746

    CAS  PubMed  Google Scholar 

  8. Dixon RM (1998) NMR studies of phospholipid metabolism in hepatic lymphoma. NMR Biomed 11:370–379

    Article  CAS  PubMed  Google Scholar 

  9. Earls JP, Rofsky NM, Decorato DR, Krinsky GA, Weinreb JC (1999) Echo-train STIR MRI of the liver: comparison of breath-hold and non-breath-hold imaging strategies. J Magn Reson Imaging 9:87–92

    Article  CAS  PubMed  Google Scholar 

  10. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9:79–93

    CAS  PubMed  Google Scholar 

  11. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11:47–63

    CAS  PubMed  Google Scholar 

  12. Gaa J, Hatabu H, Jenkins RL, Finn JP, Edelman RR (1996) Liver masses: replacement of conventional T2-weighted spin-echo MR imaging with breath-hold MR imaging. Radiology 200:459–464

    CAS  PubMed  Google Scholar 

  13. Gruetter R, Weisdorf SA, Rajanayagan V, Terpstra M, Merkle H, Truwit C L, Garwood M, Nyberg SL, Ugurbil K (1998) Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 135:260–264

    Article  CAS  PubMed  Google Scholar 

  14. Haussinger D, Schliess F, Warskulat U, Vom DS (1997) Liver cell hydration. Cell Biol Toxicol 13:275–287

    Article  CAS  PubMed  Google Scholar 

  15. Kuo YT, Li CW, Chen CY, Jao J, Wu DK, Liu GC (2004) In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner. J Magn Reson Imaging 19:598–604

    Article  PubMed  Google Scholar 

  16. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    PubMed  Google Scholar 

  17. Longo R, Ricci C, Masutti F, Vidimari R, Croce LS, Bercich L, Tiribelli C, Dalla PL (1993) Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Invest Radiol 28:297–302

    CAS  PubMed  Google Scholar 

  18. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, Forlani G, Melchionda N (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107:450–455

    Article  CAS  PubMed  Google Scholar 

  19. McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997) Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol 168:1369–1375

    CAS  PubMed  Google Scholar 

  20. Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381

    Article  CAS  PubMed  Google Scholar 

  21. Murphy M, Loosemore A, Clifton AG, Howe FA, Tate AR, Cudlip SA, Wilkins PR, Griffiths JR, Bell BA (2002) The contribution of proton magnetic resonance spectroscopy (1HMRS) to clinical brain tumour diagnosis. Br J Neurosurg 16:329–334

    Article  CAS  PubMed  Google Scholar 

  22. Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, Cline GW, DePaoli AM, Taylor SI, Gorden P, Shulman GI (2002) Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 109:1345–1350

    Article  CAS  PubMed  Google Scholar 

  23. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12:413–439

    Article  CAS  PubMed  Google Scholar 

  24. Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39:53–60

    CAS  PubMed  Google Scholar 

  25. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    CAS  PubMed  Google Scholar 

  26. Ruiz-Cabello J, Cohen JS (1992) Phospholipid metabolites as indicators of cancer cell function. NMR Biomed 5:226–233

    CAS  PubMed  Google Scholar 

  27. Salibi N, Brown MA (1998) Clinical MR spectroscopy. First principles. Wiley-Liss, New York

  28. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A, Halavaara J, Yki-Jarvinen H (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028

    Article  CAS  PubMed  Google Scholar 

  29. Soper R, Himmelreich U, Painter D, Somorjai RL, Lean CL, Dolenko B, Mountford CE, Russell P (2002) Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy. Pathology 34:417–422

    Article  PubMed  Google Scholar 

  30. Star-Lack JM, Adalsteinsson E, Gold GE, Ikeda DM, Spielman DM (2000) Motion correction and lipid suppression for 1H magnetic resonance spectroscopy. Magn Reson Med 43:325–330

    CAS  PubMed  Google Scholar 

  31. Tarasow E, Siergiejczyk L, Panasiuk A, Kubas B, Dzienis W, Prokopowicz D, Walecki J (2002) MR proton spectroscopy in liver examinations of healthy individuals in vivo. Med Sci Monit 8:MT36–MT40

    PubMed  Google Scholar 

  32. Weber MA, Lichy MP, Thilmann C, Gunther M, Bachert P, Maudsley AA, Delorme S, Schad LR, Debus J, Schlemmer HP (2003) Monitoring of irradiated brain metastases using MR perfusion imaging and 1H MR spectroscopy. Radiologe 43:388–395

    Article  PubMed  Google Scholar 

Download references

Danksagung

Diese Arbeit entstand mit großzügiger Unterstützung der DFG (Großgeräteinitiative Fe 206/8-1-723). Weiterhin bedanken wir uns bei Herrn Dr. Timo Schirmer (GE Healthcare) und Herrn PD Dr. Harald Bruhn für die kritische Durchsicht des Manuskripts.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fischbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischbach, F., Thormann, M. & Ricke, J. 1H-Magnetresonanzspektroskopie (MRS) der Leber und von Lebermalignomen bei 3,0 Tesla. Radiologe 44, 1192–1196 (2004). https://doi.org/10.1007/s00117-004-1136-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1136-3

Schlüsselwörter

Keywords

Navigation