Skip to main content
Log in

Bildgebende Diagnostik von Knorpelersatztherapien

Diagnostic imaging of cartilage repair

  • Knorpeltransplantation
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Im letzten Jahrzehnt ist eine Reihe chirurgischer Eingriffe für einen dauerhaften Knorpelersatz entwickelt worden. Für die Langzeitverlaufskontrolle dieser Operationstechniken werden klinische Scores und die morphologische und biochemische Auswertung von arthroskopisch gewonnenem Biopsiegewebe verwendet. Die Magnetresonanztomographie ist eine ausgezeichnete nichtinvasive Methode für die Beurteilung des morphologischen Status des Knorpelersatzgewebes im postoperativen Verlauf. Das MR-Erscheinungsbild der wichtigsten Knorpelersatztherapien, wie die autologe osteochondrale Transplantation, die autologe Chondrozytenimplantation und die matrixgestützte autologe Chondrozytenimplantation werden beschrieben und mögliche Komplikationen jeder Technik erwähnt. Die Bedeutung neuer MR-Techniken wie die hochauflösende morphologische Bildgebung und die mögliche Visualisierung biochemischer Informationen des Knorpelersatzgewebes wird diskutiert.

Abstract

Over the past decade a number of surgical interventions for durable cartilage repair have been developed. For the long-term follow-up of this procedures clinical scores and the morphological and biochemical evaluation of biopsies taken during arthroscopy are used.

Magnetic resonance imaging is a useful noninvasive tool for the evaluation of the morphologic status of the cartilage repair tissue throughout the postoperative period. The MR imaging appearance of the most important cartilage transplantation techniques, such as autologous osteochondral transplantation, autologous chondrocyte implantation and matrix-based autologous chondrocyte implantation are described and possible complications of each technique are mentioned. The importance of new MR techniques such as high-resolution morphologic imaging and possible visualization of biochemical information of cartilage repair tissue is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a, b
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7a, b
Abb. 8
Abb. 9

Literatur

  1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31516 knee arthroscopies. Arthroscopy 13:456–460

    Article  CAS  PubMed  Google Scholar 

  2. Buckwalter JA, Mankin HJ (1998) Articular cartilage repair and transplantation. Arthritis Rheum 41:1331–1342

    Article  CAS  PubMed  Google Scholar 

  3. Minas T, Nehrer S (1997) Current concepts in the treatment of articular cartilage defects. Bone Joint Surg Orthop 20:525–538

    CAS  Google Scholar 

  4. Gilbert JE (1998) Current treatment options in the restoration of articular cartilage. Am J Knee Surg 11:42–46

    CAS  PubMed  Google Scholar 

  5. Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, Hospodar PP (1996) Fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. Am J Roentgenol 167:127–132

    CAS  Google Scholar 

  6. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with the use of fast-spin-echo imaging. J Bone Joint Surg 80:1276–1284

    CAS  PubMed  Google Scholar 

  7. Recht M, Bobic V, Burstein D et al. (2001) Magnetic resonance imaging of articular cartilage. Clin Orthop Relat Res 391:379–396

    Article  Google Scholar 

  8. Trattnig S (1997) Overuse of hyaline cartilage and imaging. Eur J Radiol 25:188–198

    Article  CAS  PubMed  Google Scholar 

  9. Tratting S, Huber M, Breitenseher MJ, Trnka H-J, Rand T, Kaider A, Helbich T, Imhof H, Resnick D (1998) Imaging articular cartilage defects with 3D fat-suppressed echo planer imaging: comparison with conventional 3D suppressed gradient echo sequence and correlation with histology. J Comput Assist Tomogr 22:8–14

    Article  PubMed  Google Scholar 

  10. Recht MP, Piraino DW, Paletta GA et al. (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212

    CAS  PubMed  Google Scholar 

  11. Constable RT, Anderson AW, Zhong J, Gore JC (1992) Factors influencing contrast in fast spin-echo MR imaging. Magn Reson Imaging 10:497–511

    Article  CAS  PubMed  Google Scholar 

  12. Yao L, Gentili A, Thomas A (1996) Incidental magnetization transfer contrast in fast spin-echo imaging of cartilage. J Magn Reson Imaging 1:180–184

    Google Scholar 

  13. Alparslan L, Minas T, Winalski CS (2001) Magnetic resonance imaging of autologous chondrocyte implantation. Semin Ultrasound CT MRI 22(4):341–351

    Google Scholar 

  14. Minas T (2000) A practical algorithm for cartilage repair. Op Tech Sports Med 8:141–143

    Google Scholar 

  15. Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE, Richardson JB (2003) Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 60–73

    Google Scholar 

  16. Bobic V (2000) ICRS articular cartilage imaging committee. IRCS MR imaging protocol for knee articular cartilage. Newsletter 3:12

    Google Scholar 

  17. Bredella MA, Tirman PFJ, Peterfy CG et al. (1999) Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 172:1073–1080

    CAS  PubMed  Google Scholar 

  18. Kawahara Y, Uetani M, Nakahara N et al. (1998) Fast spin-echo MR of the articualar cartilage in the osteoarthrotic knee. Correlation of MR and arthroscopic findings. Acta Radiol 39:120–125

    CAS  PubMed  Google Scholar 

  19. Peterfy CG, Majumdar S, Lang P, van-Dijke CF, Sack K, Genant HK (1994) MR imaging of the arthritic knee: Improved discrimination of cartilage, synovium and effusion with pulsed saturation transfer and fat-suppressed T1 weighted sequences. Radiology 191:413–419

    CAS  PubMed  Google Scholar 

  20. Peterfy CG, van Dijke CF, Lu Y et al. (1998) Quantification of the volume of articular cartilage in the metacarpophalangeal joints of the hand: accuracy and precision of three-dimensional MR imaging. AJR Am J Roentgenol 165:371–375

    Google Scholar 

  21. Rubenstein JD, Li JG, Majumdar S, Henkelmann RM (1997) Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. Radiology 169:1–39

    Google Scholar 

  22. Hangody L, Kish G, Karpati Z, Udvarhely I, Szigeti I, Bely M (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21:751–756

    CAS  PubMed  Google Scholar 

  23. Matsusue Y, Yamamuro T, Hama H (1993) Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9:318–321

    CAS  PubMed  Google Scholar 

  24. Bobic V (1996) Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc 3:262–264

    CAS  PubMed  Google Scholar 

  25. Kish G, Modis L, Hangody L (1999) Osteochondral mosaicplasty for the treatment of focal chondral and osteochondral lesions of the knee and talus in the athlete. Rationale, indications, techniques, and results. Clin Sports Med 18:45–66

    CAS  PubMed  Google Scholar 

  26. Bobic V, Morgan CD, Carter T (2000) Osteochondral autologous graft transfer. Op Tech Sports Med 8:168–178

    Google Scholar 

  27. Pearce SG, Hurtig MB, Clarnette R, Kalra M, Cowan B, Miniaci A (2001) An investigation of 2 techniques for optimizing joint surface congruency using multiple cylindrical osteochondral autografts. Arthroscopy 17:50–55

    CAS  PubMed  Google Scholar 

  28. Dew TL, Martin RA (1992) Functional, radiographic, and histologic assessment of healing of autogenous osteochondral grafts and full-thickness cartilage defects in the talus of dogs. Am J Vet Res 53:2141–2152

    CAS  PubMed  Google Scholar 

  29. Winalski CS, Minas T (2000) Evaluation of chondral injuries by magnetic resonance imaging: repair assessments. Op Tech Sports Med 8(2):108–119

    Google Scholar 

  30. Minas T, Peterson L (1999) Advanced techniques in autologous chondrocytes transplantation. Clin Sports Med 18:13–44

    CAS  PubMed  Google Scholar 

  31. Minas T, Peterson L (2000) Autologous chondrocyte transplantation. Op Tech Sports Med 8:144–157

    Google Scholar 

  32. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two-to 9-years outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234

    Article  Google Scholar 

  33. Burkart A, Imhoff AB (2000) Diagnostic imaging after autologous chondrocyte transplantation. Correlation of magnetic resonance tomography, correlation with histological and arthroscopic findings. Orthopade 29:135–144

    Article  CAS  PubMed  Google Scholar 

  34. Gagliardi JA, Chung EM, Chandnani VP et al. (1994) Detection and staging of chondromalacia patellae. Relative efficacies of conventional MR imaging, MR arthrography and CT arthrography. AJR Am J Roentgenol 163:629–636

    CAS  PubMed  Google Scholar 

  35. Schweitzer ME, White LM (1996) Does altered biomechanics cause marrow edema? Radiology 198:851–853

    CAS  PubMed  Google Scholar 

  36. Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865

    Article  CAS  PubMed  Google Scholar 

  37. Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2 as a measure of cartilage degradation [published erratum appears in Magn Reson Med 36(6):964]. Magn Reson Med 36:665–673

    CAS  PubMed  Google Scholar 

  38. Tratting S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, Imhof H (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging 17:577–583

    Article  PubMed  Google Scholar 

  39. Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd (DTPA)(2-)-enhancend MR imaging. Radiology 205:551–558

    CAS  PubMed  Google Scholar 

  40. Allen RG, Burstein D, Gray ML (1999) Monitoring glycosaminoglycan replenishment in cartilage explants with gadolinium-enhanced magnetic resonance imaging. J Orthop Res 17:430–436

    CAS  PubMed  Google Scholar 

  41. Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D (2001) Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 36:743–748

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Trattnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trattnig, S., Plank, C., Pinker, K. et al. Bildgebende Diagnostik von Knorpelersatztherapien. Radiologe 44, 748–755 (2004). https://doi.org/10.1007/s00117-004-1085-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1085-x

Schlüsselwörter

Keywords

Navigation