Skip to main content
Log in

Magnetresonanztomographiegesteuerter fokussierter Ultraschall (MRgFUS) in der Tumortherapie—eine neuartige nichtinvasive Therapieoption

MR-guided focussed ultrasound surgery (MRgFUS)—a new noninvasive therapy modality

  • Thermotherapie
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Insbesondere in der Tumortherapie wächst zunehmend die Nachfrage nach minimal- und nichtinvasiven Therapieverfahren. Als eine wertvolle und sichere, nichtinvasive Ergänzung der Thermoverfahren etabliert sich der hochfrequente fokussierte Ultraschall. Im vorliegenden Artikel werden die Vorteile einer MRT-Steuerung bei fokussiertem Ultraschall (MRgFUS) erläutert und erste klinische Erfahrungen in der Behandlung von Gebärmuttermyomen, Mammakarzinomen und Fibroadenomen mit MRgFUS vorgestellt. Auf der Basis der hohen Zielgenauigkeit der Methode und scharfen Demarkierung der erreichten Nekrosen bietet sich diese Behandlungsmethode für viele weitere Indikationen an. Zur Zeit werden Anstrengungen unternommen, MRgFUS auch für Anwendungen an Leber und Gehirn zu etablieren.

Abstract

The demand for minimal or non-invasive therapies especially in tumor therapy is increasing constantly. High frequency focussed ultrasound represents an effective and safe alternative to established thermoablative procedures. In this article we report the advantages of MR-guidance for focussed ultrasound. We describe first clinical experiences in the treatment of uterine fibroids, breast cancer and fibroadenomas of the breast employing MR-guided focussed ultrasound surgery (MRgFUS). This method offers strong potential in the treatment also of other tumorentities since it provides excellent accuracy. Currently numerous efforts are undertaken to introduce MRgFUS for the therapy of liver or cerebral tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a-c
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6a-c

Literatur

  1. Ter Haar G (1999) Therapeutic ultrasound. Eur J Ultrasound 9(1):3–9

    Article  PubMed  Google Scholar 

  2. Lynn JG ZR, Chick AJ, Miller AE (1942) A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol (26):179–193

    Google Scholar 

  3. Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron ME-7:166–181

    Google Scholar 

  4. Ballantine HT jr, Bell E, Manlapaz J (1960) Progress and problems in the neurological applications of focused ultrasound. J Neurosurg 17:858–876

    PubMed  Google Scholar 

  5. McDannold, Hynynen K, Wolf D, Wolf G, Jolesz F (1998) MRI evaluation of thermal ablation of tumors with focused ultrasound. J Magn Reson Imaging 8(1):91–100

    CAS  PubMed  Google Scholar 

  6. McDannold NJ, Jolesz FA (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11(3):191–202

    Article  CAS  PubMed  Google Scholar 

  7. McDannold NJ, King RL, Jolesz FA, Hynynen KH (2000) Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 216(2):517–523

    CAS  PubMed  Google Scholar 

  8. Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y (2003) MR imaging-guided focused ultrasound surgery of breast cancer: correlation of dynamic contrast-enhanced MRI with histopathologic findings. Breast Cancer Res Treat 82(2):93–101

    Article  PubMed  Google Scholar 

  9. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 226(3):897–905

    PubMed  Google Scholar 

  10. Stewart EA, Gedroyc WM, Tempany CM, Quade BJ, Inbar Y, Ehrenstein T, Shushan A, Hindley JT, Goldin RD, David M, Sklair M, Rabinovici J (2003) Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am J Obstet Gynecol 189(1):48–54

    Article  PubMed  Google Scholar 

  11. Mahoney K, Fjield T, McDannold N, Clement G, Hynynen K (2001) Comparison of modelled and observed in vivo temperature elevations induced by focused ultrasound: implications for treatment planning. Phys Med Biol 46(7):1785–1798

    Article  CAS  PubMed  Google Scholar 

  12. McDannold N, Hynynen K, Jolesz F (2001) MRI monitoring of the thermal ablation of tissue: effects of long exposure times. J Magn Reson Imaging 13(3):421–427

    Article  CAS  PubMed  Google Scholar 

  13. Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz FA, Joles FA (2000) Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 43(2):220–225

    Article  CAS  PubMed  Google Scholar 

  14. Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz FA (2000) Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 44(1):167

    Article  PubMed  Google Scholar 

  15. Mulkern RV, Panych LP, McDannold NJ, Jolesz FA, Hynynen K (1998) Tissue temperature monitoring with multiple gradient-echo imaging sequences. J Magn Reson Imaging 8(2):493–502

    CAS  PubMed  Google Scholar 

  16. Jenne JW, Divkovic G, Rastert R, Debus J, Huber PE (2003) [Focused ultrasound surgery. Basics, current status, and new trends]. Radiologe 43(10):805–812

    Article  CAS  PubMed  Google Scholar 

  17. McDannold NJ, Jolesz FA, Hynynen KH (1999) Determination of the optimal delay between sonications during focused ultrasound surgery in rabbits by using MR imaging to monitor thermal buildup in vivo. Radiology 211(2):419–426

    CAS  PubMed  Google Scholar 

  18. Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, Baum J, Singer S, Jolesz FA (2001) MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 219(1):176–185

    CAS  PubMed  Google Scholar 

  19. Huber PE, Rastert R, Simiantonakis I, Roder D, Hlavac M, Wannenmacher M, Debus J, Jenne JW (2001) [Magnetic resonance-guided therapy with focused ultrasound. Non-invasive surgery of breast carcinoma?]. Radiologe 41(2):173–180

    Article  CAS  PubMed  Google Scholar 

  20. Huber PE, Jenne JW, Rastert R, Simiantonakis I, Sinn HP, Strittmatter HJ, von Fournier D, Wannenmacher MF, Debus J (2001) A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. Cancer Res 61(23):8441–8447

    CAS  PubMed  Google Scholar 

  21. Gianfelice D, Khiat A, Boulanger Y, Amara M, Belblidia A (2003) Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol 14(10):1275–1282

    PubMed  Google Scholar 

  22. Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y (2003) MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness—initial experience. Radiology 227(3):849–855

    PubMed  Google Scholar 

  23. Dick EA, Taylor-Robinson SD, Thomas HC, Gedroyc WM (2002) Ablative therapy for liver tumours. Gut 50(5):733–739

    Article  CAS  PubMed  Google Scholar 

  24. Pech M, Werk M, Beck A, Stohlmann A, Ricke J (2002) [System continuity and energy distribution in laser-induced thermo therapy (LITT)]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174(6):754–760

    Article  CAS  PubMed  Google Scholar 

  25. Smith NB, Temkin JM, Shapiro F, Hynynen K (2001) Thermal effects of focused ultrasound energy on bone tissue. Ultrasound Med Biol 27(10):1427–1433

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy JE, ter Haar GR, Cranston D (2003) High intensity focused ultrasound: surgery of the future? Br J Radiol 76(909):590–599

    Article  CAS  PubMed  Google Scholar 

  27. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2003) Non-invasive opening of BBB by focused ultrasound. Acta Neurochir 86 [suppl]:555–558

    Google Scholar 

  28. McDannold N, Moss M, Killiany R, Rosene DL, King RL, Jolesz FA, Hynynen K (2003) MRI-guided focused ultrasound surgery in the brain: tests in a primate model. Magn Reson Med 49(6):1188–1191

    Article  PubMed  Google Scholar 

  29. Madersbacher S, Kratzik C, Susani M, Marberger M (1994) Tissue ablation in benign prostatic hyperplasia with high intensity focused ultrasound. J Urol 152(6 Pt 1):1956–1960; discussion 1960–1951

    CAS  PubMed  Google Scholar 

  30. Madersbacher S, Kratzik C, Marberger M (1997) Prostatic tissue ablation by transrectal high intensity focused ultrasound: histological impact and clinical application. Ultrason Sonochem 4(2):175–179

    Article  CAS  PubMed  Google Scholar 

  31. Smith NB, Merrilees NK, Dahleh M, Hynynen K (2001) Control system for an MRI compatible intracavitary ultrasound array for thermal treatment of prostate disease. Int J Hyperthermia 17(3):271–282

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hengst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hengst, S.A., Ehrenstein, T., Herzog, H. et al. Magnetresonanztomographiegesteuerter fokussierter Ultraschall (MRgFUS) in der Tumortherapie—eine neuartige nichtinvasive Therapieoption. Radiologe 44, 339–346 (2004). https://doi.org/10.1007/s00117-004-1043-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1043-7

Schlüsselwörter

Keywords

Navigation