Skip to main content
Log in

MRT-gestützte Thermometrie in der regionalen Tiefenhyperthermie und interstitiellen Laserthermotherapie

MRI assisted thermometry for regional hyperthermia and interstitial laser thermotherapy

  • Thermotherapie
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Fragestellung

Die Untersuchungen zeigen die Möglichkeiten einer quantitativen MR-gestützten Thermometrie bei der Behandlung von Tumorpatienten mit regionaler Tiefenhyperthermie (RHT) und interstitieller Laserthermotherapie (ILTT).

Methodik

Bei 2 Tumorpatienten und 7 Gewebeproben wurden die chemische Verschiebung der Protonenresonanzfrequenz und die T1-Relaxationszeit als temperaturempfindliche MR-Parameter bei 0,2 bzw. 1,5 T untersucht. Die Thermotherapie erfolgte dabei mit einem speziellem MRT-Hyperthermie-Hybridsystem (RHT) bzw. einem temperaturgesteuerten Diodenlaser bei 830 nm (ILTT).

Ergebnisse

Beide Patienten konnten klinisch erfolgreich behandelt werden. Die gewählten temperatursensitiven MR-Parameter sind, abhängig vom therapeutischem Ansatz und den Eigenschaften des jeweiligen MR-Systems, für eine klinische MR-gestützte Thermometrie geeignet. Eine direkte Übertragung der Ergebnisse aus Phantommessungen ist nicht ohne Einschränkungen möglich.

Schlussfolgerungen

Basierend auf Voruntersuchungen belegt die klinische Anwendung der MR-gestützten Hyperthermie und ILTT die große Bedeutung dieser minimal-invasiven therapeutischen Interventionen insbesondere in der Kombination mit Online-MRT-Monitoring. Weitere klinische Untersuchungen zur Optimierung der Messmethoden, der Untersuchung von Perfusionseffekten oder der Festlegung von Schwellwerten sind notwendig.

Abstract

Purpose

To demonstrate the potential of quantitative MRI-assisted thermometry for the treatment of tumor patients with regional hyperthermia (RHT) and interstitial laser thermotherapy (ILTT).

Methods

Two patients and seven tissue samples were investigated using the T1-relaxation time and the chemical shift of the proton resonance frequency (PRF) as temperature sensitive MRI-parameters at 0.2 and 1.5 T. Thermotherapy was applied using either a dedicated MRI-hyperthermia hybrid system or a temperature controlled laser with 830 nm.

Results

Both patients were treated successfully showing clinical benefit. T1 and PRF are depending on the applied thermotherapy method and on the MR-system suitable for MRI-assisted thermometry. The clinical application based on phantom results is not necessarily adequate.

Conclusion

Clinical application and phantom experiments of RHT and ILTT show the potential of MRI-assisted thermometry for further improvement of both minimal invasive thermotherapy methods. Further investigations concerning optimization of the MRI-techniques, the influence of perfusion or the determination of threshold values are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Bertsch F, Mattner J, Stehling MK, Müller-Lisse U, Peller M, Löffler R, Weber J, Meßmer K, Wilmanns W, Issels R, Reiser M (1998) Non-invasive temperature mapping using MRI: comparison of two methods based on chemical shift and T1-relaxation. Magn Reson Imag 16:393–404

    Article  CAS  Google Scholar 

  2. Bertsch F (1999) Anwendungsmöglichkeiten und Optimierung der Temperaturbildgebung mit der chemischen Verschiebung. Dissertation, Ludwig-Maximilians-Universität, München

  3. Brix G, Schad LR, Deimling M, Lorenz WJ (1990) Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Med 8:351–356

    CAS  Google Scholar 

  4. Carter DL, MacFall JR, Clegg ST, Wan X, Prescott DM, Charles HC, Samulski TV (1998) Magnetic resonance thermometry during hyperthermia for human high-grade sarcoma. Int J Radiat Oncol Biol Phys 40(4):815–822

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Wansapura JP, Heit G, Butts K (2002) Study of laser ablation in the in vivo rabbit brain with MR thermometry. J Magn Reson Imaging 16:147–152

    Article  PubMed  Google Scholar 

  6. Dahl O (1994) Mechanisms of thermal enhancement of chemotherapeutic cytotoxity. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol 4: chemopotentiation by hyperthermia. VSP, Utrecht, pp 9–28

  7. Delannoy J, Chen CH, Turner R, Levin RL, Le Bihan D (1991) Noninvasive temperature imaging using diffusion MRI. Magn Reson Med 19:333–339

    CAS  PubMed  Google Scholar 

  8. De Poorter J, De Wagter C, De Deene Y, Thomsen C, Stahlberg F, Achten E (1995) Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: In vivo results in human muscle. Magn Reson Med 33:74–81

    PubMed  Google Scholar 

  9. De Zwart JA, Vimeux FC, Palussiere J, Salomir R, Quesson B, Delalande C, Moonen CT (2001) Online correction and visualization of motion during MRI-controlled hyperthermia. Magn Reson Med 45:128–137

    Article  PubMed  Google Scholar 

  10. Helmberger T, Holzknecht N, Schopf U, Kulinna C, Rau H, Stabler A, Reiser M (2001) Radiofrequenzablation von Lebermetastasen—Technik und erste Ergebnisse. Radiologe 41(1):69–76

    Article  CAS  PubMed  Google Scholar 

  11. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823

    CAS  PubMed  Google Scholar 

  12. Issels RD, Abdel-Rahman S, Wendtner CM, Falk MH, Kurze V, Sauer H, Aydemir U, Hiddemann W (2001) Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk soft tissue sarcomas (HR-STS) of adults: long-term results of a phase II study. Eur J Cancer 37:1599–1608

    CAS  PubMed  Google Scholar 

  13. Kato H, Koyama T, Nikawa Y, Saito M (1998) Research and development of hyperthermia machines for present and future clinical needs. Int J Hyperthermia 14(1):1–11

    CAS  PubMed  Google Scholar 

  14. Lagendijk JJW, van Rhoon GC, Hornsleth SN, Wust P, De Leeuw CC, Schneider CJ, van Dijk JDP, van der Zee J, van Heek-Romanowski R, Rahman SA, Gromoll C (1998) ESHO quality assurance guidelines for regional hyperthermia. Int J Hyperthermia 14(2):125–133

    CAS  PubMed  Google Scholar 

  15. Le Bihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion application to hyperthermia. Radiology 171:853–857

    PubMed  Google Scholar 

  16. MacFall JR, Prescott DM, Charles HC, Samulski TV (1996) 1H MRI phase thermometry in vivo in canine brain, muscle, and tumor tissue. Med Phys 23:1775–1782

    Article  CAS  PubMed  Google Scholar 

  17. Meininger M, Peller M, Issels R, Reiser M (2000) Multislice-TOMROP: application of a new T 1 mapping sequence to NMR thermometry. MAG*MA 11 [suppl 1]:326

  18. Nelson TR, Tung SM (1987) Temperature dependence of proton relaxation times in vitro. Magn Reson Imaging 5:189–199

    CAS  PubMed  Google Scholar 

  19. Pahernik SA, Peller M, Dellian M, Löffler R, Issels R, Reiser M, Messmer K, Goetz AE (1999) Validation of MR thermometry technology: a small animal model for hyperthermic treatment of tumours. Res Exp Med 199(2):59–71

    Article  CAS  Google Scholar 

  20. Parker DL, Smith V, Sheldon P, Crooks LE, Fussell L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 10(3):321–325

    Article  CAS  PubMed  Google Scholar 

  21. Peller M, Löffler R, Baur A, Turner P, Abdel-Rahman S, Futschik G, Santl M, Hiddemann W, Reiser M, Issels R (1999) MRT-gesteuerte regionale Tiefenhyperthermie. Radiologe 39:756–763

    Article  CAS  PubMed  Google Scholar 

  22. Peller M, Muacevic A, Ruprecht L, Reiser M (2002) MRI assisted laser induced thermotherapy in in vivo brain tissue. MAG*MA 15 [suppl 1]:255

  23. Peller M, Reinl HM, Weigel A, Meininger M, Issels RD, Reiser M (2002) T1 relaxation time at 0.2 Tesla for monitoring regional hyperthermia: feasibility study in muscle and adipose tissue. Magn Reson Med 47:1194–1201

    Article  PubMed  Google Scholar 

  24. Peller M, Kurze V, Loeffler R, Pahernik S, Dellian M, Goetz AE, Issels R, Reiser M (2003) Hyperthermia induces T1 relaxation and blood flow changes in tumors. A MRI thermometry study in vivo. Magn Reson Imaging 21:545–551

    Article  PubMed  Google Scholar 

  25. Peller M, Muacevic A, Sroka R, Ruprecht L, Reiser MF (2003) Interstitial laser thermotherapy in vivo brain tissue: evaluation by magnetic resonance imaging and quantitative autoradiography. Proc Internat Soc Magn Reson Med 892

    Google Scholar 

  26. Peters RD, Hinks RS,Henkelman RM (1999) Heat-source orientation and geometry dependence in proton-resonance frequency shift magnetic resonance thermometry. Magn Reson Med 41:909–918

    Article  CAS  PubMed  Google Scholar 

  27. Reinl HM, Peller M, Hagmann M, Issels RD, Reiser M (2002) Improvement of MRI-monitoring during RF-hyperthermia by using ferrofluids. MAG*MA 15 [suppl 1]:253

  28. Samulski TV, MacFall J, Zhang Y, Grant W, Charles C (1992) Non-invasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermic oncology. Int J Hyperthermia 8(6):819–829

    CAS  PubMed  Google Scholar 

  29. Stollberger R, Ascher PW, Huber D, Renhart W, Radner H, Ebner F (1998) Temperature monitoring of interstitial thermal tissue coagulation using MR phase images. J Magn Reson Imaging 8:188–196

    CAS  PubMed  Google Scholar 

  30. Vogl TJ, Straub R, Eichler K, Woitaschek D, Mack MG (2002) Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: experience with complications in 899 patients (2,520 lesions). Radiology 225(2):367–77

    PubMed  Google Scholar 

  31. Wendtner CM, Abdel-Rahman S, Krych M, Baumert J, Lindner LH, Baur A, Hiddemann W Issels RD (2002) Response to neoadjuvant chemotherapy combined with regional hyperthermia predicts long-term survival for adult patients with retroperitoneal and visceral high-risk soft tissue sarcomas. J Clin Oncol 20:3156–3164

    Article  CAS  PubMed  Google Scholar 

  32. Wlodarczyk W, Boroschewski R, Hentschel M, Wust P, Monich G, Felix R (1998) Three-dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR. J Magn Reson Imaging 8:165–174

    CAS  PubMed  Google Scholar 

  33. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Peller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peller, M., Muacevic, A., Reinl, H. et al. MRT-gestützte Thermometrie in der regionalen Tiefenhyperthermie und interstitiellen Laserthermotherapie. Radiologe 44, 310–319 (2004). https://doi.org/10.1007/s00117-004-1032-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1032-x

Schlüsselwörter

Keywords

Navigation