Skip to main content
Log in

Pädiatrische Neurointensivmedizin

Pediatric neurocritical care

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die pädiatrische Neurointensivmedizin erfordert multiprofessionelle Expertise für die Versorgung kritisch kranker Kinder. Zwischen 14 und 16 % aller kritisch kranken Kinder in der pädiatrischen Intensivmedizin leiden an einer primären neurologischen Erkrankung, wobei Kreislaufstillstände und schwere Schädel-Hirn-Traumata in Europa die größte Rolle spielen. Das kurzfristige Ziel intensivmedizinischer Therapie bei Kindern ist die Stabilisierung vitaler Funktionen, das übergeordnete Ziel hingegen ist ein Überleben ohne neurologische Schädigung, das die Ausschöpfung des individuellen entwicklungsphysiologischen Potenzials ermöglicht. Aus diesem Grund sind evidenzbasierte Methoden zur Überwachung des Gehirns während der akuten Krankheit und im Verlauf notwendig, die klinisch und apparativ durchgeführt werden. Dies gilt sowohl für Patienten mit primärer neurologischer Erkrankung als auch für alle Kinder mit einem Risiko für eine sekundäre neurologische Schädigung. Auch Patienten mit Erkrankungen des peripheren Nervensystems werden in der pädiatrischen Intensivmedizin behandelt. Hier gilt es häufig, die Zeit bis zur Rekonvaleszenz einer akuten Verschlechterung, beispielsweise im Rahmen einer Infektion, zu überbrücken. Eine besondere Herausforderung kann die Überwachung der zerebralen Funktion bei diesen Patienten darstellen, da durch die Grunderkrankung Untersuchungsergebnisse nicht wie bei vormals neurologisch gesunden Kindern interpretiert werden können. Diese Komplexität der der pädiatrischen Neurointensivmedizin, die im klinischen Alltag nur im multidisziplinären Team zu bewältigen ist, wird anhand der diagnostischen Möglichkeiten, verschiedener Krankheitsbilder und deren therapeutischen Optionen dargestellt.

Abstract

Pediatric neurocritical care requires multidisciplinary expertise for the care of critically ill children. Approximately 14–16% of critically ill children in pediatric intensive care suffer from a primary neurological disease, whereby cardiac arrest and severe traumatic brain injury play major roles in Europe. The short-term goal of interventions in the pediatric intensive care unit is to stabilize vital functions, whereas the overarching goal is to achieve survival without neurological damage that enables fulfillment of the individual developmental physiological potential. For this reason, evidence-based methods for brain monitoring during the acute phase and recovery are necessary, which can be performed clinically or with technical devices. This applies to critically ill children with primary neurological diseases and for all children at risk for secondary neurological insults. Patients with diseases of the peripheral nervous system are also treated in pediatric intensive care medicine. In these patients, the primary aim frequently consists of bridging the time until recovery after acute deterioration, for example during an infection. In these patients, monitoring the cerebral function can be especially challenging, because due to the underlying disease the results of the examination cannot be interpreted in the same way as for previously neurologically healthy children. This article summarizes the complexity of pediatric neurocritical care by presenting examples of diagnostic and therapeutic approaches in the context of various neurological diseases that can be routinely encountered in the pediatric intensive care unit and can only be successfully treated by multidisciplinary teams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Alderliesten T, Dix L, Baerts W et al (2016) Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res 79:55–64

    Article  CAS  Google Scholar 

  2. Bell MJ, Rosario BL, Kochanek PM et al (2022) Comparative effectiveness of diversion of cerebrospinal fluid for children with severe traumatic brain injury. JAMA Netw Open 5:e2220969

    Article  Google Scholar 

  3. Bennett TD, Dewitt PE, Greene TH et al (2017) Functional outcome after intracranial pressure monitoring for children with severe traumatic brain injury. JAMA Pediatr 171:965–971

    Article  Google Scholar 

  4. Bourgoin P, Barrault V, Joram N et al (2020) The prognostic value of early amplitude-integrated electroencephalography monitoring after pediatric cardiac arrest. Pediatr Crit Care Med 21:248–255

    Article  Google Scholar 

  5. Bourgoin P, Barrault V, Loron G et al (2019) Interrater agreement between critical care providers for background classification and seizure detection after implementation of amplitude-integrated electroencephalography in neonates, infants, and children. J Clin Neurophysiol. https://doi.org/10.1097/WNP.0000000000000634

    Article  Google Scholar 

  6. Brenner D, Elliston C, Hall E et al (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    Article  CAS  Google Scholar 

  7. Brown KL, Agrawal S, Kirschen MP et al (2022) The brain in pediatric critical care: unique aspects of assessment, monitoring, investigations, and follow-up. Intensive Care Med 48:535–547

    Article  Google Scholar 

  8. Bruns N, Felderhoff-Müser U, Dohna-Schwake C (2021) aEEG as a useful tool for neuromonitoring in critically ill children—Current evidence and knowledge gaps. Acta Paediatr 110:1132–1140

    Article  Google Scholar 

  9. Bruns N, Felderhoff-Müser U, Dohna-Schwake C et al (2020) aEEG use in pediatric critical care-an online survey. Front Pediatr 8:3

    Article  Google Scholar 

  10. Bruns N, Moosmann J, Munch F et al (2020) How to administer near-infrared spectroscopy in critically ill neonates, infants, and children. J Vis Exp. https://doi.org/10.3791/61533

    Article  Google Scholar 

  11. Bruns N, Sanchez-Albisua I, Weiss C et al (2019) Amplitude-integrated EEG for neurological assessment and seizure detection in a German pediatric intensive care unit. Front Pediatr 7:358

    Article  Google Scholar 

  12. Butler E, Mills N, Alix JPJ et al (2021) Knowledge and attitudes of critical care providers towards neurophysiological monitoring, seizure diagnosis, and treatment. Dev Med Child Neurol 63:976–983

    Article  Google Scholar 

  13. Du Pont-Thibodeau G, Sanchez SM, Jawad AF et al (2017) Seizure detection by critical care providers using amplitude-integrated electroencephalography and color density spectral array in pediatric cardiac arrest patients. Pediatr Crit Care Med 18:363–369

    Article  Google Scholar 

  14. Figueiro Longo MG, Jaimes C, Machado F et al (2022) Pediatric emergency MRI. Magn Reson Imaging Clin N Am 30:533–552

    Article  Google Scholar 

  15. Fink EL, Kochanek PM, Tasker RC et al (2017) International survey of critically ill children with acute neurologic insults: the prevalence of acute critical neurological disease in children: a global epidemiological assessment study. Pediatr Crit Care Med 18:330–342

    Article  Google Scholar 

  16. Ghossein J, Alnaji F, Webster RJ et al (2021) Continuous EEG in a pediatric intensive care unit: adherence to monitoring criteria and barriers to adequate implementation. Neurocrit Care 34:519–528

    Article  Google Scholar 

  17. Goeral K, Urlesberger B, Giordano V et al (2017) Prediction of outcome in neonates with hypoxic-ischemic encephalopathy II: role of amplitude-integrated electroencephalography and cerebral oxygen saturation measured by near-infrared spectroscopy. Neonatology 112:193–202

    Article  CAS  Google Scholar 

  18. Lovett ME, O’brien NF (2022) Transcranial doppler ultrasound, a review for the pediatric Intensivist. Children. https://doi.org/10.3390/children9050727

    Article  Google Scholar 

  19. Maynard D, Prior PF, Scott DF (1969) Device for continuous monitoring of cerebral activity in resuscitated patients. BMJ 4:545–546

    Article  CAS  Google Scholar 

  20. Moynihan KM, Alexander PMA, Schlapbach LJ et al (2019) Epidemiology of childhood death in Australian and New Zealand intensive care units. Intensive Care Med 45:1262–1271

    Article  Google Scholar 

  21. Regensburger AP, Konrad V, Trollmann R et al (2019) Treatment of severe traumatic brain injury in German pediatric intensive care units—a survey of current practice. Childs Nerv Syst 35:815–822

    Article  CAS  Google Scholar 

  22. Rowberry T, Kanthimathinathan HK, George F et al (2020) Implementation and early evaluation of a quantitative electroencephalography program for seizure detection in the PICU. Pediatr Crit Care Med 21:543–549

    Article  Google Scholar 

  23. Sharawat IK, Kasinathan A, Bansal A et al (2020) Evaluation of optic nerve sheath diameter and transcranial doppler as noninvasive tools to detect raised Intracranial pressure in children. Pediatr Crit Care Med 21:959–965

    Article  Google Scholar 

  24. Sugiyama K, Kashiura M, Akashi A et al (2016) Prognostic value of the recovery time of continuous normal voltage in amplitude-integrated electroencephalography in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia: a retrospective study. j intensive care 4:25

    Article  Google Scholar 

  25. Sugiyama K, Miyazaki K, Ishida T et al (2018) Categorization of post-cardiac arrest patients according to the pattern of amplitude-integrated electroencephalography after return of spontaneous circulation. Crit Care 22:226

    Article  Google Scholar 

  26. Tacke M, Janson K, Vill K et al (2022) Effects of a reduction of the number of electrodes in the EEG montage on the number of identified seizure patterns. Sci Rep 12:4621

    Article  CAS  Google Scholar 

  27. Williams CN, Piantino J, Mcevoy C et al (2018) The burden of pediatric neurocritical care in the United States. Pediatr Neurol 89:31–38

    Article  Google Scholar 

  28. Zipfel J, Hegele D, Hockel K et al (2022) Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury. Childs Nerv Syst 38:1717–1726

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Bruns.

Ethics declarations

Interessenkonflikt

N. Bruns, U. Schara-Schmidt und C. Dohna-Schwake geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruns, N., Schara-Schmidt, U. & Dohna-Schwake, C. Pädiatrische Neurointensivmedizin. Nervenarzt 94, 75–83 (2023). https://doi.org/10.1007/s00115-022-01424-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-022-01424-w

Schlüsselwörter

Keywords

Navigation