Skip to main content
Log in

Die sensomotorische Domäne im Research-Domain-Criteria-System: Fortschritte und Perspektiven

The sensorimotor domain in the research domain criteria system: progress and perspectives

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

In den vergangenen drei Jahrzehnten ist das Forschungsinteresse an sensomotorischen Auffälligkeiten bei psychischen Erkrankungen stetig gewachsen. Dieser Trend hat zu einer zunehmenden Anzahl wissenschaftlicher Initiativen geführt, die nicht nur die klinische Notwendigkeit der Früherkennung extrapyramidal-motorischer Symptome, tardiver Dyskinesien und Katatonie hervorgehoben, sondern auch zahlreiche neurobiologische Befunde und klinisch relevante Ergebnisse auf der Grundlage der Pathologie des sensomotorischen Systems bei Patient*innen mit psychischen Erkrankungen geliefert haben. Diese Entwicklungen berücksichtigend hat die National-Institute-of-Mental-Health(NIMH)-Initiative „Research Domain Criteria“ (RDoC) im Januar 2019 eine sechste Domäne mit der Bezeichnung „sensorimotorische Domäne“ eingeführt, die sich mit Defiziten des sensomotorischen Systems und damit assoziierten Störungen befasst. Um den rasanten Fortschritt alleine seit der Einführung der sensomotorischen Domäne abzubilden, wird eine zweijährige (01.01.2019 bis 18.02.2021) systematische Übersichtsarbeit vorgelegt, in der die jüngsten Ergebnisse der Bildgebung auf diesem Gebiet hervorgehoben und Herausforderungen für die zukünftige Forschung diskutiert werden. Zusammenfassend kann festgehalten werden, dass bei psychischen Erkrankungen die sensomotorische Verarbeitung mit einer Dysfunktion des zerebello-thalamo-motorkortikalen Netzwerkes assoziiert ist, die mit (sozial)kognitiven und affektiven Systemen interagiert. Erste longitudinale und interventionelle Studien verweisen zudem auf das translationale Potenzial der sensomotorischen Domäne.

Abstract

Over the past three decades research interest in hypokinetic, hyperkinetic, sensorimotor and psychomotor abnormalities in mental disorders has steadily increased. This development has led to an increasing number of scientific initiatives that have not only highlighted the clinical need for early detection of extrapyramidal motor symptoms, tardive dyskinesia and catatonia but also provided numerous neurobiological findings and clinically relevant results based on the pathology of the sensorimotor system in patients with mental disorders. In view of these developments in January 2019 the National Institute of Mental Health (NIMH) research domain criteria (RDoC) initiative introduced a sixth domain called the sensorimotor domain to address deficits in the sensorimotor system and associated behavioral abnormalities. To draw attention to the rapid progress just since the introduction of the sensorimotor domain, a 2-year (1 January 2019–18 February 2021) systematic review is presented highlighting recent neuroimaging findings and discussing challenges for future research. In summary, aberrant sensorimotor processing in mental disorders is associated with dysfunction of the cerebello-thalamo-motor cortex network, which interacts with (social)cognitive and affective systems. Initial longitudinal and interventional studies highlight the translational potential of the sensorimotor domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Walther S, Strik W (2012) Motor symptoms and schizophrenia. Neuropsychobiology 66(2):77–92

    Article  PubMed  Google Scholar 

  2. Peralta V, Cuesta MJ (2017) Motor abnormalities: from neurodevelopmental to neurodegenerative through „functional“ (Neuro)psychiatric disorders. Schizophr Bull 43(5):956–971

    Article  PubMed  PubMed Central  Google Scholar 

  3. Whitty PF, Owoeye O, Waddington JL (2009) Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull 35(2):415–424

    Article  PubMed  Google Scholar 

  4. Mittal VA, Bernard JA, Northoff G (2017) What can different motor circuits Tell us about psychosis? An RDoC perspective. Schizophr Bull 43(5):949–955

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hirjak D et al (2015) Motor dysfunction within the schizophrenia-spectrum: A dimensional step towards an underappreciated domain. Schizophr Res 169(1–3):217–233

    Article  PubMed  Google Scholar 

  6. Waddington JL, Crow TJ (1988) Abnormal involuntary movements and psychosis in the preneuroleptic era and in unmedicated patients: implications for the concept of tardive dyskinesia. In: Wolf M (Hrsg) Tardive dyskinesia: Biological mechanisms and clinical aspects. American Psychiatric Press, Washington, DC., S 51–66

    Google Scholar 

  7. Rogers D (1985) The motor disorders of severe psychiatric illness: a conflict of paradigms. Br J Psychiatry 147:221–232

    Article  CAS  PubMed  Google Scholar 

  8. Yarden PE, Discipio WJ (1971) Abnormal movements and prognosis in schizophrenia. Am J Psychiatry 128(3):317–323

    Article  CAS  PubMed  Google Scholar 

  9. Chouinard G et al (1979) Factors related to tardive dyskinesia. Am J Psychiatry 136(1):79–82

    Article  CAS  PubMed  Google Scholar 

  10. Pappa S, Dazzan P (2009) Spontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: a systematic review. Psychol Med 39(7):1065–1076

    Article  CAS  PubMed  Google Scholar 

  11. Quinn J et al (2001) Vulnerability to involuntary movements over a lifetime trajectory of schizophrenia approaches 100 %, in association with executive (frontal) dysfunction. Schizophr Res 49(1–2):79–87

    Article  CAS  PubMed  Google Scholar 

  12. Waddington JL (1995) Psychopathological and cognitive correlates of tardive dyskinesia in schizophrenia and other disorders treated with neuroleptic drugs. In: Weiner WJ, Lang AE (Hrsg) Behavioral neurology of movement disorders. Raven Press, New York, S 211–229

    Google Scholar 

  13. Walther S et al (2020) Movement disorder and sensorimotor abnormalities in schizophrenia and other psychoses—European consensus on assessment and perspectives. Eur Neuropsychopharmacol 38:25–39

    Article  CAS  PubMed  Google Scholar 

  14. Hirjak D et al (2018) Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 95:315–335

    Article  PubMed  Google Scholar 

  15. Filatova S et al (2018) Early motor developmental milestones and schizotypy in the northern Finland birth cohort study 1966. Schizophr Bull 44(5):1151–1158

    Article  PubMed  Google Scholar 

  16. Bernard JA, Mittal VA (2014) Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: the importance of regional cerebellar analysis approaches. Front Psychiatry 5:160

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mittal VA et al (2014) Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophr Bull 40(6):1204–1215

    Article  PubMed  Google Scholar 

  18. Cuesta MJ et al (2018) Motor abnormalities in first-episode psychosis patients and long-term psychosocial functioning. Schizophr Res 200:97–103

    Article  PubMed  Google Scholar 

  19. Hirjak D, Rashidi M, Fritze S, Bertolino AL, Geiger LS, Zang Z, Kubera KM, Schmitgen MM, Sambataro F, Calhoun VD, Weisbrod M, Tost H, Wolf RC (2019) Patterns of co-altered brain structure and function underlying neurological soft signs in schizophrenia spectrum disorders. Hum Brain Mapp 40(17):5029–5041. https://doi.org/10.1002/hbm.24755. PMID: 31403239; PMCID: PMC6865492

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martino M et al (2020) Abnormal functional relationship of sensorimotor network with neurotransmitter-related nuclei via subcortical-cortical loops in manic and depressive phases of bipolar disorder. Schizophr Bull 46(1):163–174

    Article  PubMed  Google Scholar 

  21. Walther S et al (2016) Gesture performance in schizophrenia predicts functional outcome after 6 months. Schizophr Bull 42(6):1326–1333

    Article  PubMed  PubMed Central  Google Scholar 

  22. Walther S et al (2015) Nonverbal social communication and gesture control in schizophrenia. Schizophr Bull 41(2):338–345

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Harten PN et al (2017) The clinical and prognostic value of motor abnormalities in psychosis, and the importance of instrumental assessment. Neurosci Biobehav Rev 80:476–487

    Article  PubMed  Google Scholar 

  24. Mittal VA, Walther S (2019) As motor system pathophysiology returns to the forefront of psychosis research, clinical implications should hold center stage. Schizophr Bull 45(3):495–497

    Article  PubMed  Google Scholar 

  25. Hirjak D, Meyer-Lindenberg A, Sambataro F, Wolf RC (2021) Sensorimotor neuroscience in mental disorders: progress, perspectives and challenges. Schizophrenia Bulletin

  26. Sanislow CA et al (2019) Advancing translational research using NIMH research domain criteria and computational methods. Neuron 101(5):779–782

    Article  CAS  PubMed  Google Scholar 

  27. Fryer SL et al (2019) Should I stay or should I go? FMRI study of response inhibition in early illness schizophrenia and risk for psychosis. Schizophr Bull 45(1):158–168

    Article  PubMed  Google Scholar 

  28. Atkinson-Clement C et al (2020) Structural and functional abnormalities within sensori-motor and limbic networks underpin intermittent explosive symptoms in Tourette disorder. J Psychiatr Res 125:1–6

    Article  PubMed  Google Scholar 

  29. Panagiotaropoulou G et al (2019) Hypo-activity of the dorsolateral prefrontal cortex relates to increased reaction time variability in patients with schizophrenia. Neuroimage Clin 23:101853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ueltzhoffer K et al (2019) Whole-brain functional connectivity during script-driven aggression in borderline personality disorder. Prog Neuropsychopharmacol Biol Psychiatry 93:46–54

    Article  PubMed  Google Scholar 

  31. Bertsch K et al (2019) Out of control? Acting out anger is associated with deficient prefrontal emotional action control in male patients with borderline personality disorder. Neuropharmacology 156:107463

    Article  CAS  PubMed  Google Scholar 

  32. Zhou X et al (2019) Cue reactivity in the ventral striatum characterizes heavy cannabis use, whereas reactivity in the dorsal striatum mediates dependent use. Biol Psychiatry Cogn Neurosci Neuroimaging 4(8):751–762

    PubMed  Google Scholar 

  33. Ersche KD et al (2020) Brain networks underlying vulnerability and resilience to drug addiction. Proc Natl Acad Sci U S A 117(26):15253–15261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kikuchi T et al (2019) Neural responses to action contingency error in different cortical areas are attributable to forward prediction or sensory processing. Sci Rep 9(1):9847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jones NP et al (2020) Reduced activation in the Pallidal-thalamic-motor pathway is associated with deficits in reward-modulated inhibitory control in adults with a history of attention-deficit/hyperactivity disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 5(12):1123–1133

    PubMed  PubMed Central  Google Scholar 

  36. Unruh KE et al (2019) Cortical and subcortical alterations associated with precision visuomotor behavior in individuals with autism spectrum disorder. J Neurophysiol 122(4):1330–1341

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koreki A et al (2019) Dysconnectivity of the agency network in schizophrenia: a functional magnetic resonance imaging study. Front Psychiatry 10:171

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cuesta MJ, Lecumberri P, Moreno-Izco L, López-Ilundain JM, Ribeiro M, Cabada T, Lorente-Omeñaca R, de Erausquin G, García-Martí G, Sanjuan J, Sánchez-Torres AM, Gómez M, Peralta V (2020) Motor abnormalities and basal ganglia in first-episode psychosis (FEP). Psychol Med. https://doi.org/10.1017/S0033291720000343. PMID: 32114994

    Article  PubMed  Google Scholar 

  39. Fritze S et al (2019) Differential contributions of brainstem structures to neurological soft signs in first- and multiple-episode schizophrenia spectrum disorders. Schizophr Res 210:101–106

    Article  PubMed  Google Scholar 

  40. Herold CJ, Essig M, Schroder J (2020) Neurological soft signs (NSS) and brain morphology in patients with chronic schizophrenia and healthy controls. PLoS ONE 15(4):e231669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kong L et al (2019) Neurological soft signs and grey matter abnormalities in individuals with ultra-high risk for psychosis. Psych J 8(2):252–260

    Article  PubMed  Google Scholar 

  42. Kong L, Herold CJ, Cheung EFC, Chan RCK, Schröder J (2020) Neurological soft signs and brain network abnormalities in schizophrenia. Schizophr Bull 46(3):562–571. https://doi.org/10.1093/schbul/sbz118. PMID: 31773162; PMCID: PMC7147582

    Article  PubMed  Google Scholar 

  43. Quispe Escudero D et al (2020) Neurological soft signs (NSS) and gray matter volume (GMV) in first-episode psychosis: an analysis of NSS motor subscores. Psychiatry Res Neuroimaging 300:111067

    Article  PubMed  Google Scholar 

  44. Wolf RC, Rashidi M, Schmitgen MM, Fritze S, Sambataro F, Kubera KM, Hirjak D (2021) Neurological soft signs predict auditory verbal hallucinations in patients with schizophrenia. Schizophr Bull 47(2):433–443. https://doi.org/10.1093/schbul/sbaa146. PMID: 33097950; PMCID: PMC7965075

    Article  PubMed  Google Scholar 

  45. Cai XL, Wang YM, Wang Y, Zhou HY, Huang J, Wang Y, Lui SSY, Møller A, Hung KSY, Mak HKF, Sham PC, Cheung EFC, Chan RCK (2021) Neurological soft signs are associated with altered cerebellar-cerebral functional connectivity in schizophrenia. Schizophr Bull. https://doi.org/10.1093/schbul/sbaa200. PMID: 33479738

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dean DJ et al (2020) Cognitive motor impairments and brain structure in schizophrenia spectrum disorder patients with a history of catatonia. Schizophr Res 222:335–341

    Article  PubMed  PubMed Central  Google Scholar 

  47. Foucher JR et al (2019) A brain imaging-based diagnostic biomarker for periodic catatonia: preliminary evidence using a Bayesian approach. Neuropsychobiology p:1–14

    Google Scholar 

  48. Fritze S et al (2020) Brainstem alterations contribute to catatonia in schizophrenia spectrum disorders. Schizophr Res 224:82–87

    Article  PubMed  Google Scholar 

  49. Hirjak D et al (2019) Cortical contributions to distinct symptom dimensions of catatonia. Schizophr Bull 45(6):1184–1194

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hirjak D et al (2020) Multimodal magnetic resonance imaging data fusion reveals distinct patterns of abnormal brain structure and function in catatonia. Schizophr Bull 46(1):202–210

    Article  PubMed  Google Scholar 

  51. Viher PV et al (2020) Altered diffusion in motor white matter tracts in psychosis patients with catatonia. Schizophr Res 220:210–217

    Article  PubMed  Google Scholar 

  52. Wasserthal J et al (2020) Multiparametric mapping of white matter microstructure in catatonia. Neuropsychopharmacology 45(10):1750–1757

    Article  PubMed  PubMed Central  Google Scholar 

  53. Viher PV et al (2019) Aberrant fronto-striatal connectivity and fine motor function in schizophrenia. Psychiatry Res Neuroimaging 288:44–50

    Article  PubMed  Google Scholar 

  54. Wertz CJ et al (2019) Disconnected and hyperactive: a replication of sensorimotor cortex abnormalities in patients with schizophrenia during proactive response inhibition. Schizophr Bull 45(3):552–561

    Article  PubMed  Google Scholar 

  55. Wolf RC et al (2020) A neural signature of parkinsonism in patients with schizophrenia spectrum disorders: a multimodal MRI study using parallel ICA. Schizophr Bull 46(4):999–1008

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lim TV et al (2019) Impairments in reinforcement learning do not explain enhanced habit formation in cocaine use disorder. Psychopharmacology 236(8):2359–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chase HW et al (2020) Neural mechanisms of persistent avoidance in OCD: A novel avoidance devaluation study. Neuroimage Clin 28:102404

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ersche KD, Lim TV, Murley AG, Rua C, Vaghi MM, White TL, Williams GB, Robbins TW (2021) Reduced glutamate turnover in the putamen is linked with automatic habits in human cocaine addiction. Biol Psychiatry 89(10):970–979. https://doi.org/10.1016/j.biopsych.2020.12.009. PMID: 33581835; PMCID: PMC8083107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van der Straten A et al (2020) The effect of distress on the balance between goal-directed and habit networks in obsessive-compulsive disorder. Transl Psychiatry 10(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li Y et al (2020) Pyrosequencing analysis of IRS1 methylation levels in schizophrenia with tardive dyskinesia. Mol Med Rep 21(4):1702–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kindler J et al (2019) Functional and structural correlates of abnormal involuntary movements in psychosis risk and first episode psychosis. Schizophr Res 212:196–203

    Article  PubMed  Google Scholar 

  62. Magioncalda P et al (2020) Intrinsic brain activity of subcortical-cortical sensorimotor system and psychomotor alterations in schizophrenia and bipolar disorder: A preliminary study. Schizophr Res 218:157–165

    Article  PubMed  Google Scholar 

  63. Walther S et al (2020) Inhibitory repetitive transcranial magnetic stimulation to treat psychomotor slowing—a transdiagnostic, mechanism based randomized double-blind controlled trial. Schizophr Bull Open. https://doi.org/10.1093/schizbullopen/sgaa020

    Article  Google Scholar 

  64. Walther S et al (2019) Structure and neural mechanisms of catatonia. Lancet Psychiatry 6(7):610–619

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hirjak D et al (2020) Going back to Kahlbaum’s psychomotor (and GABAergic) origins: is catatonia more than just a motor and dopaminergic syndrome? Schizophr Bull 46(2):272–285

    PubMed  Google Scholar 

  66. Northoff G, Hirjak D, Wolf RC, Magioncalda P, Martino M (2020) All roads lead to the motor cortex: psychomotor mechanisms and their biochemical modulation in psychiatric disorders. Mol Psychiatry 26(1):92–102. https://doi.org/10.1038/s41380-020-0814-5. PMID: 32555423

    Article  PubMed  Google Scholar 

  67. Haroche A et al (2020) Brain imaging in catatonia: systematic review and directions for future research. Psychol Med 50(10):1585–1597

    Article  PubMed  Google Scholar 

  68. Rathod B et al (2020) Neurological soft signs and brain abnormalities in schizophrenia: a literature review. Cureus 12(10):e11050

    PubMed  PubMed Central  Google Scholar 

  69. Nopoulos PC et al (2001) An MRI study of midbrain morphology in patients with schizophrenia: relationship to psychosis, neuroleptics, and cerebellar neural circuitry. Biol Psychiatry 49(1):13–19

    Article  CAS  PubMed  Google Scholar 

  70. Chase HW et al (2018) Meta-analytic evidence for altered mesolimbic responses to reward in schizophrenia. Hum Brain Mapp 39(7):2917–2928

    Article  PubMed  PubMed Central  Google Scholar 

  71. Franken IH, Hendriksa VM, van den Brink W (2002) Initial validation of two opiate craving questionnaires the obsessive compulsive drug use scale and the desires for drug questionnaire. Addict Behav 27(5):675–685

    Article  PubMed  Google Scholar 

  72. Northoff G, Hirjak D, Wolf RC, Magioncalda P, Martino M (2020) Why is there symptom coupling of psychological and motor changes in psychomotor mechanisms? Insights from the brain’s topography. Mol Psychiatry. https://doi.org/10.1038/s41380-020-00945-7. PMID: 33203994

    Article  PubMed  Google Scholar 

  73. Barroilhet SA, Ghaemi SN (2020) Psychopathology of mixed states. Psychiatr Clin North Am 43(1):27–46

    Article  PubMed  Google Scholar 

  74. Northoff G (2016) Spatiotemporal psychopathology I: No rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J Affect Disord 190:854–866

    Article  PubMed  Google Scholar 

  75. Northoff G et al (2011) The „resting-state hypothesis“ of major depressive disorder‑a translational subcortical-cortical framework for a system disorder. Neurosci Biobehav Rev 35(9):1929–1945

    Article  PubMed  Google Scholar 

  76. Hirjak D et al (2019) Antipsychotic-induced motor symptoms in schizophrenic psychoses-Part 1 : dystonia, akathisia und parkinsonism. Nervenarzt 90(1):1–11

    Article  CAS  PubMed  Google Scholar 

  77. Martino M et al (2016) Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proc Natl Acad Sci U S A 113(17):4824–4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Northoff G et al (2018) Too fast or too slow? Time and neuronal variability in bipolar disorder—a combined theoretical and empirical investigation. Schizophr Bull 44(1):54–64

    Article  PubMed  Google Scholar 

  79. Peralta V et al (2010) DSM-IV catatonia signs and criteria in first-episode, drug-naive, psychotic patients: psychometric validity and response to antipsychotic medication. Schizophr Res 118(1–3):168–175

    Article  PubMed  Google Scholar 

  80. FitzGerald JJ et al (2018) Quantifying motor impairment in movement disorders. Front Neurosci 12:202

    Article  PubMed  PubMed Central  Google Scholar 

  81. Peralta V, Cuesta MJ (2020) The effect of antipsychotic medication on neuromotor abnormalities in neuroleptic-naive nonaffective psychotic patients: a naturalistic study with haloperidol, risperidone, or olanzapine. Prim Care Companion J Clin Psychiatry 12(2):PCC.09m00799. https://doi.org/10.4088/PCC.09m00799gry. PMID: 20694120; PMCID: PMC2911000

    Article  Google Scholar 

  82. Sambataro F, Fritze S, Rashidi M, Topor CE, Kubera KM, Wolf RC, Hirjak D (2020) Moving forward: distinct sensorimotor abnormalities predict clinical outcome after 6 months in patients with schizophrenia. Eur Neuropsychopharmacol 36:72–82. https://doi.org/10.1016/j.euroneuro.2020.05.002. PMID: 32522386

    Article  CAS  PubMed  Google Scholar 

  83. van der Burg NC et al (2020) The genetics of drug-related movement disorders, an umbrella review of meta-analyses. Mol Psychiatry 25(10):2237–2250

    Article  PubMed  Google Scholar 

  84. Hirjak D et al (2019) Antipsychotic-induced motor symptoms in schizophrenic psychoses-Part 2 : Catatonic symptoms and neuroleptic malignant syndrome. Nervenarzt 90(1):12–24

    Article  CAS  PubMed  Google Scholar 

  85. Hirjak D et al (2019) Antipsychotic-induced motor symptoms in schizophrenic psychoses-Part 3 : Tardive dyskinesia. Nervenarzt 90(5):472–484

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Abbildungen 2 und 3 wurden mit BioRender (https://biorender.com) erstellt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Hirjak.

Ethics declarations

Interessenkonflikt

D. Hirjak, S. Fritze, G. Northoff, K.M. Kubera und R.C. Wolf geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirjak, D., Fritze, S., Northoff, G. et al. Die sensomotorische Domäne im Research-Domain-Criteria-System: Fortschritte und Perspektiven. Nervenarzt 92, 915–924 (2021). https://doi.org/10.1007/s00115-021-01144-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-021-01144-7

Schlüsselwörter

Keywords

Navigation