Skip to main content

Mikrobiota und Multiple Sklerose

Microbiota and multiple sclerosis

Zusammenfassung

Die Multiple Sklerose (MS) ist eine entzündliche Erkrankung des zentralen Nervensystems, die maßgeblich von autoreaktiven Lymphozyten geprägt ist. Ein Faktor, der zur Aktivierung dieser autoreaktiven Lymphozyten beitragen könnte, ist der Einfluss der intestinalen Mikrobiota oder ihrer metabolischen Produkte auf die Immunzellen im Darmgewebe. Hier fassen wir den aktuellen Stand der Forschung zusammen und beleuchten einerseits Studien, welche anhand humanen Materials das Mikrobiom von MS-Patienten untersuchen und charakterisieren. Andererseits stellen wir Studien vor, die klassische oder humanisierte Tiermodelle nutzen, um den Einfluss bestimmter Mikrobiotaspezies oder Mikrobiotazusammensetzungen auf das Immunsystem und den Krankheitsverlauf zu definieren und eventuelle Kausalzusammenhänge aufzudecken.

Abstract

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system driven by autoreactive lymphocytes. Due to its close contact with the gut-associated lymphoid tissue, the intestinal microbiota and/or their metabolites may be one of the factors that influence the activation of autoreactive lymphocytes. This article summarizes and discusses the current research efforts to characterize the microbiome of MS patients using human material. In addition, we present research studies that utilized classical or humanized animal models to determine the influence of certain microbiota species or compositions of microbiota on the immune system and disease progression and to define possible causal associations.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Berer K, Gerdes LA, Cekanaviciute E et al (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA 114:10719–10724

    CAS  Article  Google Scholar 

  2. 2.

    Berer K, Martinez I, Walker A et al (2018) Dietary non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. Sci Rep 8:10431

    Article  Google Scholar 

  3. 3.

    Berer K, Mues M, Koutrolos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541

    CAS  Article  Google Scholar 

  4. 4.

    Bettelli E, Baeten D, Jager A et al (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116:2393–2402

    CAS  Article  Google Scholar 

  5. 5.

    Cantarel BL, Waubant E, Chehoud C et al (2015) Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med 63:729–734

    CAS  Article  Google Scholar 

  6. 6.

    Cekanaviciute E, Yoo BB, Runia TF et al (2017) Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA 114:10713–10718

    CAS  Article  Google Scholar 

  7. 7.

    Chen T, Noto D, Hoshino Y et al (2019) Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation 16:165

    Article  Google Scholar 

  8. 8.

    Derrien M, Van Baarlen P, Hooiveld G et al (2011) Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol 2:166

    Article  Google Scholar 

  9. 9.

    Duscha A, Gisevius B, Hirschberg S et al (2020) Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180:1067–1080.e16

    CAS  Article  Google Scholar 

  10. 10.

    Ganesh BP, Klopfleisch R, Loh G et al (2013) Commensal Akkermansia muciniphila exacerbates gut inflammation in salmonella typhimurium-infected gnotobiotic mice. PLoS One 8:e74963

    CAS  Article  Google Scholar 

  11. 11.

    Godel C, Kunkel B, Kashani A et al (2020) Perturbation of gut microbiota decreases susceptibility but does not modulate ongoing autoimmune neurological disease. J Neuroinflammation 17:79

    Article  Google Scholar 

  12. 12.

    Haghikia A, Jorg S, Duscha A et al (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43:817–829

    CAS  Article  Google Scholar 

  13. 13.

    Haghikia A, Linker RA (2018) Nutrition, microbiome and multiple sclerosis: current knowledge from basic research and clinical practice. Nervenarzt 89:463–471

    CAS  Article  Google Scholar 

  14. 14.

    Hohlfeld R, Dornmair K, Meinl E et al (2016) The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol 15:198–209

    CAS  Article  Google Scholar 

  15. 15.

    Hohlfeld R, Dornmair K, Meinl E et al (2016) The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 15:317–331

    CAS  Article  Google Scholar 

  16. 16.

    Jangi S, Gandhi R, Cox LM et al (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7:12015

    CAS  Article  Google Scholar 

  17. 17.

    Kadowaki A, Saga R, Lin Y et al (2019) Gut microbiota-dependent CCR9+CD4+ T cells are altered in secondary progressive multiple sclerosis. Brain 142:916–931

    Article  Google Scholar 

  18. 18.

    Krishnamoorthy G, Lassmann H, Wekerle H et al (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392

    CAS  Article  Google Scholar 

  19. 19.

    Lee YK, Menezes JS, Umesaki Y et al (2011) Proinflammatory T‑cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108(1):4615–4622

    CAS  Article  Google Scholar 

  20. 20.

    Liu S, Rezende RM, Moreira TG et al (2019) Oral administration of miR-30d from feces of MS patients suppresses MS-like symptoms in mice by expanding Akkermansia muciniphila. Cell Host Microbe 26:779–794.e8

    CAS  Article  Google Scholar 

  21. 21.

    Mangalam A, Shahi SK, Luckey D et al (2017) Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep 20:1269–1277

    CAS  Article  Google Scholar 

  22. 22.

    Miyake S, Kim S, Suda W et al (2015) Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIva and IV clusters. PLoS ONE 10:e137429

    Article  Google Scholar 

  23. 23.

    Ochoa-Reparaz J, Mielcarz DW, Ditrio LE et al (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 183:6041–6050

    CAS  Article  Google Scholar 

  24. 24.

    Pöllinger B, Krishnamoorthy G, Berer K et al (2009) Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206:1303–1316

    Article  Google Scholar 

  25. 25.

    Probstel AK, Baranzini SE (2018) The role of the gut microbiome in multiple sclerosis risk and progression: towards characterization of the “MS microbiome”. Neurotherapeutics 15:126–134

    CAS  Article  Google Scholar 

  26. 26.

    Reynders T, Devolder L, Valles-Colomer M et al (2020) Gut microbiome variation is associated to multiple sclerosis phenotypic subtypes. Ann Clin Transl Neurol 7:406–419

    CAS  Article  Google Scholar 

  27. 27.

    Takewaki D, Suda W, Sato W et al (2020) Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2011703117

    Article  PubMed  Google Scholar 

  28. 28.

    The iMSMS Consortium, Singh S, Baumann R et al (2020) Household paired design reduces variance and increases power in multi-city gut microbiome study in multiple sclerosis. Mult Scler J Exp Transl Clin. https://doi.org/10.1177/1352458520924594

    Article  Google Scholar 

  29. 29.

    Wekerle H (2019) Secondary progressive multiple sclerosis and the gut-brain axis. Brain 142:838–840

    Article  Google Scholar 

  30. 30.

    Wilck N, Matus MG, Kearney SM et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589

    CAS  Article  Google Scholar 

  31. 31.

    Yadav SK, Boppana S, Ito N et al (2017) Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood. Proc Natl Acad Sci USA 114:E9318–E9327

    CAS  Article  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei Prof. R. Hohlfeld und Prof. H. Wekerle für das kritische Lesen des Manuskripts.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Peters.

Ethics declarations

Interessenkonflikt

L.A. Gerdes, H. Yoon und A. Peters geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerdes, L.A., Yoon, H. & Peters, A. Mikrobiota und Multiple Sklerose. Nervenarzt 91, 1096–1107 (2020). https://doi.org/10.1007/s00115-020-01012-w

Download citation

Schlüsselwörter

  • Autoreaktive Lymphozyten
  • Darmassoziiertes lymphoides Gewebe
  • Experimentelle autoimmune Enzephalomyelitis
  • Stuhltransplantation
  • Metabolite

Keywords

  • Autoreactive lymphocytes
  • Gut-associated lymphoid tissue
  • Experimental autoimmune encephalomyelitis
  • Fecal transplantation
  • Metabolites