Folsäure- und Vitamin-B12-Bestimmung in der Diagnostik kognitiver Störungen

Übersicht und Datenanalyse einer universitären Gedächtnisambulanz

Folic acid and vitamin B12 determination in the assessment of cognitive disorders

Overview and data analysis from a university outpatient memory clinic

Zusammenfassung

Vitamin-B12- und Folsäuremangelzustände sind insbesondere im höheren Lebensalter häufig. Da derartige Mangelzustände relevant dyskognitive Faktoren darstellen, ist ihre Bestimmung in der diagnostischen Abklärung kognitiver Störung bedeutsam und unverzichtbarer Bestandteil der Routinediagnostik in einer Gedächtnisambulanz. Wir geben einen Überblick über den klinischen Stellenwert von Vitamin-B12- und Folsäuremangelzuständen im Kontext kognitiver Störungen und über diesbezüglich relevante diagnostische und therapeutische Aspekte. Die Literaturübersicht wird durch eine Datenanalyse einer Kohorte von 250 Patienten aus unserer Gedächtnisambulanz ergänzt.

Abstract

Vitamin B12 and folic acid deficiencies are particularly frequent conditions in older people. Since these metabolic disorders represent relevant dyscognitive factors, the assessment of vitamin B12 and folic acid levels is essential in the diagnostic approach of cognitive disorders, such as mild cognitive impairment and dementia in an outpatient memory clinic. This article summarizes the relevant diagnostic and therapeutic aspects of vitamin B12 and folic acid deficiencies and their effects on cognition. The literature review is supplemented by a data analysis of a naturalistic cohort of 250 patients from this outpatient memory clinic.

This is a preview of subscription content, log in to check access.

Abb. 1

Literatur

  1. 1.

    Schrier S, Motil K, Tirnauer J (2017) Causes and pathophysiology of vitamin B12 and folate deficiency. www.uptodate.com. Zugegriffen: 9.11.2018

    Google Scholar 

  2. 2.

    Schrier S, Mentzer W, Tirnauer J (2017) Clinical manifestation and diagnosis of vitamin B12 and folate deficiency. www.uptodate.com. Zugegriffen: 9.11.2018

    Google Scholar 

  3. 3.

    Carmel R (2008) How I treat cobalamin (vitamin B12) deficiency. Blood 112:2214–2222

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Reynolds E (2014) The neurology of folic acid deficiency. Handb Clin Neurol 120:927

    CAS  PubMed  Google Scholar 

  5. 5.

    Green R (2017) Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 129:2603–2611

    CAS  PubMed  Google Scholar 

  6. 6.

    Scaglione F, Panzavolta G (2014) Folate, folic acid and 5‑methyltetrahydrofolate are not the same thing. Xenobiotica 44:480–488

    CAS  PubMed  Google Scholar 

  7. 7.

    Lindenbaum J et al (1994) Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr 60:2–11

    CAS  PubMed  Google Scholar 

  8. 8.

    Allen R et al (1993) Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. Faseb J 7:1344–1353

    CAS  PubMed  Google Scholar 

  9. 9.

    Wickramasinghe S (1995) Morphology, biology and biochemistry of cobalamin- and folate-deficient bone marrow cells. Baillieres Clin Haematol 8:441–459

    CAS  PubMed  Google Scholar 

  10. 10.

    Stabler S (2013) Clinical practice. Vitamin B12 deficiency. N Engl J Med 368:149–160

    CAS  PubMed  Google Scholar 

  11. 11.

    Hemmer B et al (1998) Subacute combined degeneration: clinical, electrophysiological, and magnetic resonance imaging findings. J Neurol Neurosurg Psychiatry 65:822–827

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pittock S, Payne T, Harper C (2002) Reversible myelopathy in a 34-year-old man with vitamin B12 deficiency. Mayo Clin Proc 77:291–294

    PubMed  Google Scholar 

  13. 13.

    Lindenbaum J et al (1988) Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 318:1720–1728

    CAS  PubMed  Google Scholar 

  14. 14.

    Bottiglieri T (1996) Folate, vitamin B12, and neuropsychiatric disorders. Nutr Rev 54:382–390

    CAS  PubMed  Google Scholar 

  15. 15.

    Blasko I et al (2012) Conversion from mild cognitive impairment to dementia: influence of folic acid and vitamin B12 use in the VITA cohort. J Nutr Health Aging 16:687–694

    CAS  PubMed  Google Scholar 

  16. 16.

    Stoopler E, Kuperstein A (2013) Glossitis secondary to vitamin B12 deficiency anemia. CMAJ 185:E582

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhu J et al (2013) Atrophic glossitis is attributed to cobalamin deficiency. Shanghai Kou Qiang Yi Xue 22:58–62

    PubMed  Google Scholar 

  18. 18.

    Garcia B et al (2009) A case report of pernicious anemia and recurrent aphthous stomatitis. J Contemp Dent Pract 10:83–89

    PubMed  Google Scholar 

  19. 19.

    Gulcan E et al (2008) Cyanocobalamin may be beneficial in the treatment of recurrent aphthous ulcers even when vitamin B12 levels are normal. Am J Med Sci 336:379–382

    PubMed  Google Scholar 

  20. 20.

    Jessen F, Deuschl G, Maier W (2016) S3-Leitline „Demenzen“. Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde (DGPPN). Deutsche Gesellschaft für Neurologie (DGN). https://www.awmf.org/uploads/tx_szleitlinien/038-013l_S3-Demenzen-2016-07.pdf

    Google Scholar 

  21. 21.

    Clarfield A (2003) The decreasing prevalence of reversible dementias: an updated meta-analysis. Arch Intern Med 163:2219–2229

    PubMed  Google Scholar 

  22. 22.

    Malouf R, Areosa Sastre A (2003) Vitamin B12 for cognition. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd004394

    Article  PubMed  Google Scholar 

  23. 23.

    Gupta L et al (2016) Assessment of brain cognitive functions in patients with vitamin B12 deficiency using resting state functional MRI: a longitudinal study. Magn Reson Imaging 34:191–196

    CAS  PubMed  Google Scholar 

  24. 24.

    Akdal G, Yener G, Kurt P (2008) Treatment resonsive executive and behavioral dysfunction associated with vitamin B12 deficiency. Neurocase 14:147–150

    PubMed  Google Scholar 

  25. 25.

    Briani C et al (2013) Cobalamin deficiency: clinical picture and radiological findings. Nutrients 5:4521–4539

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Stabler S et al (1990) Clinical spectrum and diagnosis of cobalamin deficiency. Blood 76:871–881

    CAS  PubMed  Google Scholar 

  27. 27.

    Whyte E et al (2002) Cognitive and behavioural correlates of low vitamin B12 levels in elderly patients with progressive dementia. Am J Geriatr Psychiatry 10:321–327

    PubMed  Google Scholar 

  28. 28.

    Moore E et al (2012) Cognitive impairment and vitamin B12: a review. Int Psychogeriatr 24:541–556

    PubMed  Google Scholar 

  29. 29.

    Zhang D et al (2017) Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J Geriatr Psychiatry Neurol 30:50–59

    PubMed  Google Scholar 

  30. 30.

    Silva D et al (2013) Do MCI patients with vitamin B12 deficiency have distinctive cognitive deficits? Bmc Res Notes 6:357

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Soysal P, Turan Isik A (2018) Vitamin B12 deficiency can be a cause of acute reversible parkinsonism and cognitive impairment in older adults. Geriatr Gerontol Int 18:650–651

    PubMed  Google Scholar 

  32. 32.

    de Jager C et al (2012) Cognitive and clinical outcomes of homocysteine-lowering B‑vitamin treatemnt in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry 27:592–600

    PubMed  Google Scholar 

  33. 33.

    Malouf R, Evans JG (2008) Folic acis with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev 4. https://doi.org/10.1002/14651858.cd004514.pub2

    Article  PubMed  Google Scholar 

  34. 34.

    Aisen P et al (2008) High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA 300:1774–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Spence J (2016) Metabolic vitamin B12 deficiency: a missed opportunity to prevent dementia and stroke. Nutr Res 36:109–116

    CAS  PubMed  Google Scholar 

  36. 36.

    Bizzaro N, Antico A (2014) Diagnosis and classification of pernicious anemia. Autoimmun Rev 13:565–568

    PubMed  Google Scholar 

  37. 37.

    Pawlak R, Lester S, Babatunde T (2014) The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr 68:541–548

    CAS  PubMed  Google Scholar 

  38. 38.

    Khan A, Shafiq I, Hassan Shah M (2017) Prevalence of vitamin B12 deficiency in patients with type II diabetes mellitus on metformin: a study from Khyber Pakhtunkhwa. Cureus e1577:18

    Google Scholar 

  39. 39.

    Maes M, Fixen D, Linnebur S (2017) Adverse effects of proton-pump inhibitor use in older adults: a review of the evidence. Ther Adv Drug Saf 8:273–297

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Valente E et al (2011) Diagnostic accuracy of holotranscobalamin, methylmalonic acid, serum cobalamin, and other indicators of tissue vitamin B12 status in the elderly. Clin Chem 57:856–863

    CAS  PubMed  Google Scholar 

  41. 41.

    Herrmann W et al (2003) Functional vitamin B12 deficiency and determination of holotranscobalamin in populations at risk. Clin Chem Lab Med 41:1478–1488

    CAS  PubMed  Google Scholar 

  42. 42.

    Carmel R (2008) How I treat cobalamin (vitamin B12) deficiency. Blood 112:2214–2221

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Schrier S (2017) Treatment of vitamin B12 and folate deficiencies. www.uptodate.com (p. 1–18). Zugegriffen: 9.11.2018

    Google Scholar 

  44. 44.

    Kuzminski A et al (1998) Effective treatment of cobalamin deficiency with oral cobalamin. Blood 92:1191–1198

    CAS  PubMed  Google Scholar 

  45. 45.

    Wang H et al (2018) Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd004655.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mills J, Molloy A, Reynolds E (2018) Do the benefits of folic acis fortification outweigh the risk of msasking vitamin B12 deficiency. BMJ 360:1–3

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. Robert Haußmann.

Ethics declarations

Interessenkonflikt

R. Haussmann, C. Sauer, S. Neumann, A. Zweiniger, J. Lange und M. Donix geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen oder an menschlichem Gewebe wurden mit Zustimmung der zuständigen Ethikkommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haußmann, R., Sauer, C., Neumann, S. et al. Folsäure- und Vitamin-B12-Bestimmung in der Diagnostik kognitiver Störungen. Nervenarzt 90, 1162–1169 (2019). https://doi.org/10.1007/s00115-019-0710-x

Download citation

Schlüsselwörter

  • Vitamin-B12-Mangel
  • Folsäuremangel
  • Kognitive Störungen
  • Leichte kognitive Störung
  • Demenz

Keywords

  • Vitamin B12 deficiency
  • Folic acid deficiency
  • Cognitive impairments
  • Mild cognitive impairment
  • Dementia