Advertisement

Der Nervenarzt

, Volume 89, Issue 6, pp 692–698 | Cite as

Grundlagen zur Diagnose und Therapie von Gliomen

  • H.-G. Wirsching
  • T. Weiss
  • P. Roth
  • M. Weller
Grundlagenforschung für den Kliniker
  • 494 Downloads

Zusammenfassung

Hintergrund

Traditionell wurden Gliome basierend auf ihren histopathologischen Eigenschaften klassifiziert. Mit Einführung der revidierten WHO(„World Health Organization“)-Klassifikation der Tumoren des Zentralnervensystems von 2016 wurden molekulare Eigenschaften in die Diagnose integriert.

Ziel der Arbeit

Kernaspekte der WHO-Klassifikation von 2016 und Implikationen für die klinische Versorgung von Gliompatienten werden zusammengefasst. Zudem wird ein Überblick über experimentelle Therapiekonzepte gegeben.

Ergebnisse

Oligodendrogliome werden seit 2016 durch das gleichzeitige Vorliegen einer Isozitratdehydrogenase(IDH)-1- oder -2-Mutation und einer Kodeletion der Chromosomenarme 1p und 19q definiert. Astrozytäre Tumoren werden in solche mit IDH-Wildtyp und mutierter IDH unterteilt. Astrozytome mit IDH-Wildtyp umfassen auch etwa 90 % der Glioblastome, die häufigsten und prognostisch ungünstigsten primären malignen Hirntumoren. Das Ausmaß der Resektion ist ein wichtiger prognostischer Faktor bei Patienten mit diffus wachsenden Gliomen. Postoperativ wird in der Regel kombiniert mit Strahlentherapie und alkylierender Chemotherapie behandelt. Die Hypermethylierung des Promoters des DNA-Reparaturgens O6-Methylguanin-DNA-Methyltransferase (MGMT) ist bei astrozytären Tumoren mit IDH-Wildtyp prädiktiv für das Ansprechen auf das Alkylans Temozolomid. Viele der sich aktuell in klinischer Testung befindlichen Therapieansätze zielen auf die Förderung einer gegen Tumorzellen gerichteten Immunantwort ab. Bislang existiert aber noch kein zugelassenes immuntherapeutisches Behandlungskonzept für Gliome.

Diskussion

Etablierte Therapien von Gliomen sind Chirurgie, Strahlen- und Chemotherapie. Die Integration molekularer Aspekte in die Klassifikation von Gliomen bildet die Grundlage für personalisierte Therapieansätze.

Schlüsselwörter

Klassifikation Isozitratdehydrogenase 1p/19q Immuntherapie Rezidivtherapie 

Basic principles of diagnosis and treatment of gliomas

Abstract

Background

Traditionally, gliomas were classified based on histopathological features alone. The revised World Health Organization (WHO) classification of tumors of the central nervous system from 2016 integrated molecular features into the histopathological diagnosis.

Objective

To summarize key aspects of the WHO classification from 2016 and implications for the clinical management of glioma patients. An overview of novel treatment approaches is also provided.

Results

Oligodendrogliomas are defined independently of their histopathological appearance by the simultaneous presence of a mutation in the isocitrate dehydrogenase (IDH)-1 or IDH-2 gene and co-deletion of chromosome arms 1p and 19q. Astrocytomas are classified based on the presence or absence of mutations in IDH. Astrocytic tumors with wild-type IDH comprise approximately 90% of glioblastomas, the most common malignant primary brain tumor in adults. The extent of resection is a favorable prognostic factor in diffuse gliomas. Postoperatively, most patients are treated with a combination of radiotherapy and alkylating agent chemotherapy. In IDH wild-type astrocytic tumors, hypermethylation of the promoter of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) gene is predictive for benefit from the alkylating agent temozolomide. Most novel treatment approaches that are currently being assessed in clinical trials aim at reprogramming the immune system to specifically eradicate tumor cells, but the efficacy of such approaches in gliomas remains to be demonstrated.

Discussion

To date the classical treatment modalities comprising surgery, radiotherapy and chemotherapy remain the mainstay of glioma treatment. The integration of molecular features into the classification of gliomas is a basis for personalized treatment approaches.

Keywords

Classification Isocitrate dehydrogenase 1p/19q Immunotherapy Recurrence treatment 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

H.-G. Wirsching erhielt Honorare für die Teilnahme an Beratungsgremien von Roche. P. Roth erhielt Honorare für Vorträge und Teilnahmen an Beratungsgremien von BMS, Novartis, Novocure, MSD, Virometix, Roche und Covagen. M. Weller erhielt Forschungsgelder von Abbvie, Acceleron, Actelion, Bayer, Merck, Sharp & Dohme (MSD), Merck (EMD), Novocure, OGD2, Piqur, Roche und Tragara, und Honorare für Vorträge oder Teilnahme an Beratungsgremien von Abbvie, BMS, Celgene, Celldex, Merck, Sharp & Dohme (MSD), Merck (EMD), Novocure, Orbus, Pfizer, Progenics, Roche, Teva und Tocagen. T. Weiss gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820CrossRefPubMedGoogle Scholar
  2. 2.
    Reifenberger G et al (2017) Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol 14(7):434–452CrossRefPubMedGoogle Scholar
  3. 3.
    Ostrom QT et al (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19(suppl 5):v1–v88CrossRefPubMedGoogle Scholar
  4. 4.
    Gramatzki D et al (2016) Glioblastoma in the Canton of Zurich, Switzerland revisited: 2005 to 2009. Cancer 122(14):2206–2215CrossRefPubMedGoogle Scholar
  5. 5.
    Weller M et al (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18(6):e315–e329CrossRefPubMedGoogle Scholar
  6. 6.
    Brown TJ et al (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2(11):1460–1469CrossRefPubMedGoogle Scholar
  7. 7.
    Franz DN et al (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381(9861):125–132CrossRefPubMedGoogle Scholar
  8. 8.
    Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefPubMedGoogle Scholar
  9. 9.
    Perry JR et al (2017) Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 376(11):1027–1037CrossRefPubMedGoogle Scholar
  10. 10.
    Wick W et al (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13(7):707–715CrossRefPubMedGoogle Scholar
  11. 11.
    Malmstrom A et al (2012) Temozolomide versus standard 6‑week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13(9):916–926CrossRefPubMedGoogle Scholar
  12. 12.
    Herrlinger U et al (2017) Phase III trial of CCNU/Temozolomide (TMZ) combination therapy vs. standard TMZ therapy for newly diagnosed MGMT-methylated glioblastoma patients: the CeTeg/NOA-09 trial. Neuro Oncol 19(suppl 6):vi13–vi14CrossRefGoogle Scholar
  13. 13.
    Stupp R et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318(23):2306–2316CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chinot OL et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722CrossRefPubMedGoogle Scholar
  15. 15.
    Gilbert MR et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wick W et al (2017) Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 377(20):1954–1963CrossRefPubMedGoogle Scholar
  17. 17.
    van den Bent MJ et al (2017) Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet 390(10103):1645–1653CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wick W et al (2013) Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 81(17):1515–1522CrossRefPubMedGoogle Scholar
  19. 19.
    van den Bent MJ et al (2005) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366(9490):985–990CrossRefPubMedGoogle Scholar
  20. 20.
    Buckner JC et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374(14):1344–1355CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cairncross G et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31(3):337–343CrossRefPubMedGoogle Scholar
  22. 22.
    Pignatti F et al (2002) Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 20(8):2076–2084CrossRefPubMedGoogle Scholar
  23. 23.
    Weller M et al (2015) MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res 21(9):2057–2064CrossRefPubMedGoogle Scholar
  24. 24.
    Kreisl TN et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745CrossRefPubMedGoogle Scholar
  25. 25.
    Friedman HS et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27(28):4733–4740CrossRefPubMedGoogle Scholar
  26. 26.
    Reardon DA et al (2017) Randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol 19(suppl 3):iii21–iii21CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Weller M et al (2017) Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol 13(6):363–374CrossRefPubMedGoogle Scholar
  28. 28.
    Weller M et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18(10):1373–1385CrossRefPubMedGoogle Scholar
  29. 29.
    van den Bent M et al (2017) First results of the randomized phase II study on depatux-M alone, depatux-M in combination with temozolomide and either either temozolomide or lomustine in recurrent EGFR amplified glioblastoma: first report from Intellance 2/EORTC trial 1410. Neuro Oncol 19(suppl 6):vi316–vi316CrossRefGoogle Scholar
  30. 30.
    Lombardi G et al (2017) REGOMA: a randomized, multicenter, controlled open-label phase II clinical trial evaluating regorafenib activity in relapsed glioblastoma patients. Ann Oncol 28(suppl 5):v605–v649Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für NeurologieUniversitätsspital Zürich und Universität ZürichZürichSchweiz

Personalised recommendations