Der Nervenarzt

, Volume 89, Issue 4, pp 463–471 | Cite as

Ernährung, Mikrobiom und Multiple Sklerose

Aktuelle Erkenntnisse aus der Grundlagenforschung und der Klinik
CME

Abstract

Epidemiologische Daten sprechen für eine überproportionale Zunahme der Inzidenz der Multiplen Sklerose (MS) in den letzten Jahrzehnten, vor allem auch in den Industrienationen. Während diese Zunahme auch mit veränderten Diagnosekriterien und einer verbesserten Sensitivität der bildgebenden Verfahren einhergeht, sprechen aktuelle Daten vor allem für eine wichtige Rolle, die Veränderungen unserer Lebensgewohnheiten spielen. In den letzten Jahren wurde besonders die Bedeutung des Darmes und des intestinalen Mikrobioms für einige neurologische Erkrankungen und insbesondere auch die MS erkannt. Da Ernährungsgewohnheiten einen erheblichen Einfluss auf die Zusammensetzung des Mikrobioms haben und sich unsere Ernährung in den letzten Jahrzehnten erheblich verändert hat, können Nahrungsmittelbestandteile eine wichtige Rolle in der MS-Pathogenese spielen. Im vorliegenden Weiterbildungsartikel fassen wir die aktuellen Erkenntnisse zur Rolle des Darms und zu Effekten von Ernährungsbestandteilen auf das Mikrobiom in der MS-Pathogenese zusammen.

Schlüsselwörter

Pathogenese Salz Fettsäuren Rauchen Alkohol 

Nutrition, microbiome and multiple sclerosis

Current knowledge from basic research and clinical practice

Abstract

Epidemiological data indicate a disproportional increase in the incidence of multiple sclerosis (MS) over the last decades, particularly in industrialized countries. Although this increase is also associated with altered diagnostic criteria and improved sensitivity of imaging procedures, current data suggest that particularly alterations in our way of life play an important role. In recent years the importance of the gut and intestinal microbiome for some neurological diseases and in particular for MS was recognized. Because nutritional habits have a substantial influence on the composition of the microbiome and our nutrition has changed considerably in the last decades, nutritional components can play an important role in the pathogenesis of MS. In this further education article we summarize the currently available evidence on the role of the gut and on the effects of dietary components on the microbiome in the pathogenesis of MS.

Keywords

Pathogenesis Salt Fatty acid Smoking Alcohol 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Haghikia und R. A. Linker geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Gregory AP, Dendrou CA, Attfield KE (2012) TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 488(7412):508–511CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Farh KK, Marson A, Zhu J et al (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518(7539):337–343CrossRefPubMedGoogle Scholar
  3. 3.
    Berg-Hansen P, Moen SM, Sandvik L et al (2015) Prevalence of multiple sclerosis among immigrants in Norway. Mult Scler 21(6):695–702CrossRefPubMedGoogle Scholar
  4. 4.
    Ascherio A, Munger KL (2007) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 61(4):288–299CrossRefPubMedGoogle Scholar
  5. 5.
    Ascherio A, Munger KL (2007) Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann Neurol 61(6):504–513CrossRefPubMedGoogle Scholar
  6. 6.
    Gianfrancesco MA, Stridh P, Rhead B et al (2017) Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology 88(17):1623–1629CrossRefPubMedGoogle Scholar
  7. 7.
    Goto Y, Panea C, Nakato G et al (2014) Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40(4):594–607CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Berer K, Mues M, Koutrolos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374):538–541CrossRefPubMedGoogle Scholar
  9. 9.
    Berer K, Gerdes LA, Cekanaviciute E et al (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA 114(40):10719–10724CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen J, Chia N, Kalari KR et al (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 6:28484CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kleinewietfeld M, Manzel A, Titze J et al (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496(7446):518–522CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Binger KJ, Gebhardt M, Heinig M et al (2015) High salt reduces the activation of IL-4–and IL-13-stimulated macrophages. J Clin Invest 125(11):4223–4238CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Farez MF, Fiol MP, Gaitán MI et al (2015) Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatr 86(1):26–31CrossRefGoogle Scholar
  14. 14.
    Fitzgerald KC, Munger KL, Hartung HP et al (2017) Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann Neurol 82(1):20–29CrossRefPubMedGoogle Scholar
  15. 15.
    Cortese M, Yuan C, Chitnis T, Ascherio A, Munger KL (2017) No association between dietary sodium intake and the risk of multiple sclerosis. Neurology 89(13):1322–1329CrossRefPubMedGoogle Scholar
  16. 16.
    Koch-Henriksen N, Lauer K (2017) Dietary sodium intake: an etiologic dead end in multiple sclerosis. Neurology 89(13):1314–1315CrossRefPubMedGoogle Scholar
  17. 17.
    Wilck N, Matus MG, Kearney SM et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551(7682):585–589PubMedGoogle Scholar
  18. 18.
    Hedström AK, Olsson T, Alfredsson L (2012) High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler 18(9):1334–1336CrossRefPubMedGoogle Scholar
  19. 19.
    Hedström AK, Olsson T, Alfredsson L (2016) Body mass index during adolescence, rather than childhood, is critical in determining MS risk. Mult Scler 22(7):878–883CrossRefPubMedGoogle Scholar
  20. 20.
    Munger KL, Chitnis T, Ascherio A (2009) Body size and risk of MS in two cohorts of US women. Neurology 73(19):1543–1550CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Diaz-Cruz C, Chua AS, Malik MT et al (2017) The effect of alcohol and red wine consumption on clinical and MRI outcomes in multiple sclerosis. Mult Scler Relat Disord 17:47–53CrossRefPubMedGoogle Scholar
  22. 22.
    Bjørnevik K, Chitnis T, Ascherio A, Munger KL (2017) Polyunsaturated fatty acids and the risk of multiple sclerosis. Mult Scler 23(14):1830–1838CrossRefPubMedGoogle Scholar
  23. 23.
    Hoare S, Lithander F, van der Mei I et al (2016) Higher intake of omega-3 polyunsaturated fatty acids is associated with a decreased risk of a first clinical diagnosis of central nervous system demyelination: results from the Ausimmune Study. Mult Scler 22(7):884–892CrossRefPubMedGoogle Scholar
  24. 24.
    Yan Y, Jiang W, Spinetti T et al (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38(6):1154–1163CrossRefPubMedGoogle Scholar
  25. 25.
    Farinotti M, Vacchi L, Simi S et al (2012) Dietary interventions for multiple sclerosis. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd004192.pub3 PubMedGoogle Scholar
  26. 26.
    Haghikia A, Jörg S, Duscha A et al (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43(4):817–829CrossRefPubMedGoogle Scholar
  27. 27.
    Mariño E, Richards JL, McLeod KH et al (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18(5):552–562CrossRefPubMedGoogle Scholar
  28. 28.
    Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573CrossRefPubMedGoogle Scholar
  29. 29.
    Hedström AK, Hillert J, Olsson T, Alfredsson L (2013) Nicotine might have a protective effect in the etiology of multiple sclerosis. Mult Scler 19(8):1009–1013CrossRefPubMedGoogle Scholar
  30. 30.
    Hedström AK, Bäärnhielm M, Olsson T, Alfredsson L (2009) Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 73(9):696–701CrossRefPubMedGoogle Scholar
  31. 31.
    Ramanujam R, Hedström AK, Manouchehrinia A et al (2015) Effect of smoking cessation on multiple sclerosis prognosis. JAMA Neurol 72(10):1117–1123CrossRefPubMedGoogle Scholar
  32. 32.
    Hedström AK, Hillert J, Olsson T, Alfredsson L (2014) Alcohol as a modifiable lifestyle factor affecting multiple sclerosis risk. Jama Neurol 71(3):300–305CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Neurologische KlinikSt. Josef-Hospital/Ruhr Universität BochumBochumDeutschland
  2. 2.Neurologische KlinikUniversitätsklinikum ErlangenErlangenDeutschland

Personalised recommendations