Advertisement

Der Nervenarzt

, Volume 89, Issue 6, pp 666–673 | Cite as

Neuromyelitis-optica-Spektrum-Erkrankung und Schwangerschaft

  • N. Borisow
  • K. Hellwig
  • F. Paul
Übersichten
  • 348 Downloads

Zusammenfassung

Hintergrund

Neuromyelitis-optica-Spektrum-Erkrankungen (NMOSD) sind autoimmun-entzündliche Erkrankungen des Zentralnervensystems (ZNS), die vorrangig Frauen betreffen. Ein Teil dieser Patientinnen erkrankt im gebärfähigen Alter, sodass Beratungsbedarf bezüglich Familienplanung und Schwangerschaften bestehen kann.

Ziel

Die aktuelle Publikation liefert einen Überblick zu den Themen Fertilität, Schwangerschaftskomplikationen und den Einfluss einer Schwangerschaft auf den NMOSD-Krankheitsverlauf. Darüber hinaus werden Therapieoptionen während der Schwangerschaft dargestellt.

Material und Methoden

Mithilfe der Datenbank PubMed erfolgte eine Recherche der aktuellen Literatur.

Ergebnisse und Diskussion

Tierexperimentelle Studien weisen auf Einschränkungen der Fertilität bei NMOSD hin, zur Fertilität von NMOSD-Patientinnen existieren bislang jedoch keine ausreichenden Daten. Eine Schwangerschaft bei NMOSD-Patientinnen geht mit einer erhöhten postpartalen Krankheitsaktivität sowie einem höheren Grad der Behinderung nach einer Schwangerschaft einher. Es liegen Hinweise auf ein erhöhtes Risiko für Schwangerschaftskomplikationen wie Spontanaborte und eine Präeklampsie vor. Zur Therapie eines akuten Schubs während einer Schwangerschaft können Methylprednisolon und/oder Plasmapherese/Immunadsorption eingesetzt werden. Das Absetzen bzw. die Fortführung einer immunsuppressiven Therapie mit Azathioprin oder Rituximab sollte kritisch unter Berücksichtigung der bisherigen Krankheitsaktivität abgewogen werden. Daher ist eine Mitbetreuung von NMOSD-Patienten, insbesondere in besonderen Situationen wie einer Schwangerschaft, durch spezialisierte Zentren empfehlenswert.

Schlüsselwörter

Fertilität Schwangerschaftskomplikationen Methylprednisolon Immunsuppressive Therapie Postpartale Krankheitsaktivität 

Neuromyelitis optica spectrum disorder and pregnancy

Abstract

Background

Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune inflammatory diseases of the central nervous system that mainly affect women. In some of these patients NMOSD occurs during fertile age. For this reason, treating physicians may be confronted with questions concerning family planning, pregnancy and birth.

Objective

This study provides an overview on the influence of NMOSD on fertility, pregnancy complications and pregnancy outcome. The effect of pregnancy on NMOSD course and therapy options during pregnancy are discussed.

Material and methods

A search of the current literature was carried out using the PubMed database.

Results and conclusion

Animal studies have shown lower fertility rates in NMOSD; however, studies investigating fertility in NMOSD patients are lacking. Pregnancy in NMOSD patients are associated with an increase in postpartum disease activity and a higher grade of disability after pregnancy. Some studies showed higher risks of pregnancy complications e. g. spontaneous abortions and preeclampsia. With a few limitations, acute relapses during pregnancy can be treated with methylprednisolone and/or plasma exchange/immunoadsorption. Stopping or continuing immunosuppressive therapy with azathioprine or rituximab during pregnancy should be critically weighed considering previous and current disease activity. Therefore, a joint supervision by a specialized center is recommended, particularly in specific situations such as pregnancy.

Keywords

Fertility Pregnancy complications Methylprednisolone Immunosuppressive therapy Postpartum disease activity 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Paul gehört dem wissenschaftlichen Beirat von Novartis an, erhielt Vortragshonorare und Reisekostenerstattungen von Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme, Merck Serono, Alexion, Chugai, MedImmune und Shire, ist Academic Editor von PLoS One, ist Associate Editor von Neurology® Neuroimmunology & Neuroinflammation; übte Beratertätigkeiten für Sanofi-Genzyme, Biogen Idec, MedImmune, Shire und Alexion aus; erhielt Forschungsunterstützung von Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme, Alexion, Merck Serono, von der Deutschen Forschungsgemeinschaft, Werth Stiftung der Stadt Köln, Bundesministerium für Bildung und Forschung, Arthur Arnstein Stiftung Berlin, EU FP7 Rahmenprogramm, Guthy Jackson Charitable Foundation und National Multiple Sclerosis of the USA. K. Hellwig weist auf folgende Beziehungen hin: Beratertätigkeiten und Vortragshonorare, sowie Forschungsunterstützung von Bayer Healthcare, Biogen, Novartis Pharma, Teva Pharma, Roche, Sanofi-Genzyme und Merck. N. Borisow gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abboud H, Petrak A, Mealy M et al (2016) Treatment of acute relapses in neuromyelitis optica: Steroids alone versus steroids plus plasma exchange. Mult Scler 22:185–192.  https://doi.org/10.1177/1352458515581438 CrossRefPubMedGoogle Scholar
  2. 2.
    Abou-Nassar K, Karsh J, Giulivi A, Allan D (2010) Successful prevention of thrombotic thrombocytopenic purpura (TTP) relapse using monthly prophylactic plasma exchanges throughout pregnancy in a patient with systemic lupus erythematosus and a prior history of refractory TTP and recurrent fetal loss. Transfus Apher Sci 43:29–31.  https://doi.org/10.1016/j.transci.2010.05.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Alami Z, Agier MS, Ahid S et al (2017) Pregnancy outcome following in utero exposure to azathioprine: a French comparative observational study. Therapie.  https://doi.org/10.1016/j.therap.2017.06.006 PubMedCrossRefGoogle Scholar
  4. 4.
    Araki M, Matsuoka T, Miyamoto K et al (2014) Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology 82:1302–1306.  https://doi.org/10.1212/WNL.0000000000000317 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Asgari N, Flanagan EP, Fujihara K et al (2017) Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm 4:e343.  https://doi.org/10.1212/NXI.0000000000000343 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bennett JL, O’Connor KC, Bar-Or A et al (2015) B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2:e104.  https://doi.org/10.1212/NXI.0000000000000104 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bennett JL, de Seze J, Lana-Peixoto M et al (2015) Neuromyelitis optica and multiple sclerosis: seeing differences through optical coherence tomography. Mult Scler 21:678–688.  https://doi.org/10.1177/1352458514567216 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bermas BL (2014) Non-steroidal anti inflammatory drugs, glucocorticoids and disease modifying anti-rheumatic drugs for the management of rheumatoid arthritis before and during pregnancy. Curr Opin Rheumatol 26:334–340.  https://doi.org/10.1097/BOR.0000000000000054 CrossRefPubMedGoogle Scholar
  9. 9.
    bfarm (2018) Intravenöse Immunglobuline bei der Multiplen Sklerose. http://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Zulassung/BereitsZugelAM/offlabel/Bewertungen/Neuro/IVIG_MS.pdf. Zugegriffen: 24. Aug. 2017Google Scholar
  10. 10.
    Bonnan M, Cabre P (2012) Plasma exchange in severe attacks of neuromyelitis optica. Mult Scler Int 2012:787630.  https://doi.org/10.1155/2012/787630 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bonnet F, Mercié P, Morlat P et al (1999) Devic’s neuromyelitis optica during pregnancy in a patient with systemic lupus erythematosus. Lupus 8:244–247.  https://doi.org/10.1191/096120399678847696 CrossRefPubMedGoogle Scholar
  12. 12.
    Bontadi A, Ruffatti A, Marson P et al (2012) Plasma exchange and immunoadsorption effectively remove antiphospholipid antibodies in pregnant patients with antiphospholipid syndrome. J Clin Apher 27:200–204. https://doi.org/10.1002/jca .21229CrossRefPubMedGoogle Scholar
  13. 13.
    Borisow N, Döring A, Pfueller CF et al (2012) Expert recommendations to personalization of medical approaches in treatment of multiple sclerosis: an overview of family planning and pregnancy. EPMA J 3:9.  https://doi.org/10.1186/1878-5085-3-9 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Borisow N, Kleiter I, Gahlen A et al (2017) Influence of female sex and fertile age on neuromyelitis optica spectrum disorders. Mult Scler 23:1092–1103.  https://doi.org/10.1177/1352458516671203 CrossRefPubMedGoogle Scholar
  15. 15.
    Bourre B, Marignier R, Zéphir H et al (2012) Neuromyelitis optica and pregnancy. Neurology 78:875–879.  https://doi.org/10.1212/WNL.0b013e31824c466f CrossRefPubMedGoogle Scholar
  16. 16.
    Bove R, Elsone L, Alvarez E et al (2017) Female hormonal exposures and neuromyelitis optica symptom onset in a multicenter study. Neurol Neuroimmunol Neuroinflamm.  https://doi.org/10.1212/NXI.0000000000000339 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Coelho J, Beaugerie L, Colombel JF et al (2011) Pregnancy outcome in patients with inflammatory bowel disease treated with thiopurines: cohort from the CESAME Study. Gut 60:198–203.  https://doi.org/10.1136/gut.2010.222893 CrossRefPubMedGoogle Scholar
  18. 18.
    Confavreux C, Hutchinson M, Hours MM et al (1998) Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med 339:285–291.  https://doi.org/10.1056/NEJM199807303390501 CrossRefPubMedGoogle Scholar
  19. 19.
    Cox JL, Koepsell SA, Shunkwiler SM (2017) Therapeutic plasma exchange and pregnancy: a case report and guidelines for performing plasma exchange in a pregnant patient. J Clin Apher 32:191–195. https://doi.org/10.1002/jca .21468CrossRefPubMedGoogle Scholar
  20. 20.
    Davoudi V, Keyhanian K, Bove RM, Chitnis T (2016) Immunology of neuromyelitis optica during pregnancy. Neurol Neuroimmunol Neuroinflamm 3:e288.  https://doi.org/10.1212/NXI.0000000000000288 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    DeWitte DB, Buick MK, Cyran SE, Maisels MJ (1984) Neonatal pancytopenia and severe combined immunodeficiency associated with antenatal administration of azathioprine and prednisone. J Pediatr 105:625–628CrossRefPubMedGoogle Scholar
  22. 22.
    El-Haieg DO, Zanati MF, El-Foual FM (2007) Plasmapheresis and pregnancy outcome in patients with antiphospholipid syndrome. Int J Gynaecol Obstet 99:236–241.  https://doi.org/10.1016/j.ijgo.2007.05.045 CrossRefPubMedGoogle Scholar
  23. 23.
    Elsone L, Panicker J, Mutch K et al (2014) Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients. Mult Scler 20:501–504.  https://doi.org/10.1177/1352458513495938 CrossRefPubMedGoogle Scholar
  24. 24.
    Embryotox (2017) http//www.embyotox.de. Zugegriffen: 24. Aug. 2017
  25. 25.
    Fragoso YD, Adoni T, Bichuetti DB et al (2013) Neuromyelitis optica and pregnancy. J Neurol 260:2614–2619.  https://doi.org/10.1007/s00415-013-7031-y CrossRefPubMedGoogle Scholar
  26. 26.
    Friedrichs B, Tiemann M, Salwender H et al (2006) The effects of rituximab treatment during pregnancy on a neonate. Haematologica 91:1426–1427PubMedGoogle Scholar
  27. 27.
    Hertwig L, Pache F, Romero-Suarez S et al (2016) Distinct functionality of neutrophils in multiple sclerosis and neuromyelitis optica. Mult Scler 22:160–173.  https://doi.org/10.1177/1352458515586084 CrossRefPubMedGoogle Scholar
  28. 28.
    Hoeltzenbein M, Beck E, Rajwanshi R et al (2016) Tocilizumab use in pregnancy: analysis of a global safety database including data from clinical trials and post-marketing data. Semin Arthritis Rheum 46:238–245.  https://doi.org/10.1016/j.semarthrit.2016.05.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Hoffmann F, Kraft A, Heigl F et al (2015) Tryptophan immunoadsorption for multiple sclerosis and neuromyelitis optica: therapy option for acute relapses during pregnancy and breastfeeding. Nervenarzt 86:179–186.  https://doi.org/10.1007/s00115-014-4239-8 CrossRefPubMedGoogle Scholar
  30. 30.
    Jarius S, Kleiter I, Ruprecht K et al (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome. J Neuroinflammation 13(281).  https://doi.org/10.1186/s12974-016-0719-z CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jarius S, Paul F, Franciotta D et al (2008) Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol 4:202–214.  https://doi.org/10.1038/ncpneuro0764 CrossRefPubMedGoogle Scholar
  32. 32.
    Jarius S, Ruprecht K, Kleiter I et al (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation 13:279.  https://doi.org/10.1186/s12974-016-0717-1 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jarius S, Ruprecht K, Kleiter I et al (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 13:280.  https://doi.org/10.1186/s12974-016-0718-0 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jarius S, Ruprecht K, Wildemann B et al (2012) Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation 9:14.  https://doi.org/10.1186/1742-2094-9-14 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jarius S, Wildemann B, Paul F (2014) Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 176:149–164.  https://doi.org/10.1111/cei.12271 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jharap B, de Boer NKH, Stokkers P et al (2014) Intrauterine exposure and pharmacology of conventional thiopurine therapy in pregnant patients with inflammatory bowel disease. Gut 63:451–457.  https://doi.org/10.1136/gutjnl-2012-303615 CrossRefPubMedGoogle Scholar
  37. 37.
    Jurewicz A, Selmaj K (2015) Relapse of neuromyelitis optica during pregnancy—treatment options and literature review. Clin Neurol Neurosurg 130:159–161.  https://doi.org/10.1016/j.clineuro.2014.12.023 CrossRefPubMedGoogle Scholar
  38. 38.
    Kim W, Kim S‑H, Nakashima I et al (2012) Influence of pregnancy on neuromyelitis optica spectrum disorder. Neurology 78:1264–1267.  https://doi.org/10.1212/WNL.0b013e318250d812 CrossRefPubMedGoogle Scholar
  39. 39.
    Klawitter E, Bove R, Elsone L et al (2017) High risk of post-partum relapses in neuromyelitis optica spectrum disorder. Neurology 89:2238.  https://doi.org/10.1212/WNL.0000000000004681 CrossRefGoogle Scholar
  40. 40.
    Kleiter I, Gahlen A, Borisow N et al (2016) Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol 79:206–216.  https://doi.org/10.1002/ana.24554 CrossRefPubMedGoogle Scholar
  41. 41.
    Klink DT, van Elburg RM, Schreurs MWJ, van Well GTJ (2008) Rituximab administration in third trimester of pregnancy suppresses neonatal B‑cell development. Clin Dev Immunol.  https://doi.org/10.1155/2008/271363 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Körtvélyessy P, Breu M, Pawlitzki M et al (2017) ADEM-like presentation, anti-MOG antibodies, and MS pathology: TWO case reports. Neurol Neuroimmunol Neuroinflamm 4:e335.  https://doi.org/10.1212/NXI.0000000000000335 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kremer L, Mealy M, Jacob A et al (2014) Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult Scler 20:843–847.  https://doi.org/10.1177/1352458513507822 CrossRefPubMedGoogle Scholar
  44. 44.
    Magraner MJ, Coret F, Casanova B (2013) The effect of intravenous immunoglobulin on neuromyelitis optica. Neurologia 28:65–72.  https://doi.org/10.1016/j.nrl.2012.03.014 CrossRefPubMedGoogle Scholar
  45. 45.
    Metz I, Beißbarth T, Ellenberger D et al (2016) Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e204.  https://doi.org/10.1212/NXI.0000000000000204 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nakajima K, Watanabe O, Mochizuki M et al (2016) Pregnancy outcomes after exposure to tocilizumab: a retrospective analysis of 61 patients in Japan. Mod Rheumatol 26:667–671.  https://doi.org/10.3109/14397595.2016.1147405 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nakamura Y, Yoshida K, Itoh S et al (1999) Immunoadsorption plasmapheresis as a treatment for pregnancy complicated by systemic lupus erythematosus with positive antiphospholipid antibodies. Am J Reprod Immunol 41:307–311CrossRefPubMedGoogle Scholar
  48. 48.
    Nour MM, Nakashima I, Coutinho E et al (2016) Pregnancy outcomes in aquaporin-4-positive neuromyelitis optica spectrum disorder. Neurology 86:79–87.  https://doi.org/10.1212/WNL.0000000000002208 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Okada K, Tsuji S, Tanaka K (2007) Intermittent intravenous immunoglobulin successfully prevents relapses of neuromyelitis optica. Intern Med 46:1671–1672CrossRefPubMedGoogle Scholar
  50. 50.
    Pache F, Wildemann B, Paul F, Jarius S (2017) Neuromyelitis optica. Fortschr Neurol Psychiatr 85:e1.  https://doi.org/10.1055/s-0035-1567186 CrossRefPubMedGoogle Scholar
  51. 51.
    Pache F, Zimmermann H, Mikolajczak J et al (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflammation 13:282.  https://doi.org/10.1186/s12974-016-0720-6 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pandit L, Asgari N, Apiwattanakul M et al (2015) Demographic and clinical features of neuromyelitis optica: a review. Mult Scler 21:845–853.  https://doi.org/10.1177/1352458515572406 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Park-Wyllie L, Mazzotta P, Pastuszak A et al (2000) Birth defects after maternal exposure to corticosteroids: prospective cohort study and meta-analysis of epidemiological studies. Teratology 62:385–392. https://doi.org/10.1002/1096-9926(200012)62:6〈385::AID-TERA5〉3.0.CO;2-ZCrossRefPubMedGoogle Scholar
  54. 54.
    Pellkofer HL, Suessmair C, Schulze A et al (2009) Course of neuromyelitis optica during inadvertent pregnancy in a patient treated with rituximab. Mult Scler 15:1006–1008.  https://doi.org/10.1177/1352458509106512 CrossRefPubMedGoogle Scholar
  55. 55.
    Pittock SJ, Weinshenker BG, Lucchinetti CF et al (2006) Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol 63:964–968.  https://doi.org/10.1001/archneur.63.7.964 CrossRefPubMedGoogle Scholar
  56. 56.
    Plauborg AV, Hansen AV, Garne E (2016) Use of azathioprine and corticosteroids during pregnancy and birth outcome in women diagnosed with inflammatory bowel disease. Birth Defects Res Part A Clin Mol Teratol 106:494–499.  https://doi.org/10.1002/bdra.23509 CrossRefPubMedGoogle Scholar
  57. 57.
    Proia A, Paesano R, Torcia F et al (2002) Thrombotic thrombocytopenic purpura and pregnancy: a case report and a review of the literature. Ann Hematol 81:210–214.  https://doi.org/10.1007/s00277-001-0426-3 CrossRefPubMedGoogle Scholar
  58. 58.
    Reindl M, Rostasy K (2015) MOG antibody-associated diseases. Neurol Neuroimmunol Neuroinflamm 2:e60.  https://doi.org/10.1212/NXI.0000000000000060 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Reuss R, Rommer PS, Brück W et al (2009) A woman with acute myelopathy in pregnancy: case outcome. BMJ 339:b4026CrossRefPubMedGoogle Scholar
  60. 60.
    Ringelstein M, Ayzenberg I, Harmel J et al (2015) Long-term therapy with Interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol 72:756–763.  https://doi.org/10.1001/jamaneurol.2015.0533 CrossRefPubMedGoogle Scholar
  61. 61.
    Ringelstein M, Harmel J, Distelmaier F et al (2013) Neuromyelitis optica and pregnancy during therapeutic B cell depletion: infant exposure to anti-AQP4 antibody and prevention of rebound relapses with low-dose rituximab postpartum. Mult Scler 19:1544–1547.  https://doi.org/10.1177/1352458513498125 CrossRefPubMedGoogle Scholar
  62. 62.
    Saadoun S, Waters P, Leite MI et al (2013) Neuromyelitis optica IgG causes placental inflammation and fetal death. J Immunol 191:2999–3005.  https://doi.org/10.4049/jimmunol.1301483 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Schmidt F, Zimmermann H, Mikolajczak J et al (2017) Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 11:45–50.  https://doi.org/10.1016/j.msard.2016.11.008 CrossRefPubMedGoogle Scholar
  64. 64.
    Schneider E, Zimmermann H, Oberwahrenbrock T et al (2013) Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE 8:e66151.  https://doi.org/10.1371/journal.pone.0066151 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sepúlveda M, Armangué T, Sola-Valls N et al (2016) Neuromyelitis optica spectrum disorders: comparison according to the phenotype and serostatus. Neurol Neuroimmunol Neuroinflamm 3:e225.  https://doi.org/10.1212/NXI.0000000000000225 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shang W, Liu J (2011) Neuromyelitis optica during pregnancy. Int J Gynaecol Obstet 115:66–68.  https://doi.org/10.1016/j.ijgo.2011.05.016 CrossRefPubMedGoogle Scholar
  67. 67.
    Shimizu Y, Fujihara K, Ohashi T et al (2016) Pregnancy-related relapse risk factors in women with anti-AQP4 antibody positivity and neuromyelitis optica spectrum disorder. Mult Scler 22:1413–1420.  https://doi.org/10.1177/1352458515583376 CrossRefPubMedGoogle Scholar
  68. 68.
    Sinnecker T, Dörr J, Pfueller CF et al (2012) Distinct lesion morphology at 7‑T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 79:708–714.  https://doi.org/10.1212/WNL.0b013e3182648bc8 CrossRefPubMedGoogle Scholar
  69. 69.
    Sinnecker T, Kuchling J, Dusek P et al (2015) Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 6:16.  https://doi.org/10.1186/s13167-015-0038-y CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sinnecker T, Schumacher S, Mueller K et al (2016) MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7 T. Neurol Neuroimmunol Neuroinflamm 3:e259.  https://doi.org/10.1212/NXI.0000000000000259 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Spadaro M, Gerdes LA, Krumbholz M et al (2016) Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e257.  https://doi.org/10.1212/NXI.0000000000000257 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Stellmann J‑P, Krumbholz M, Friede T et al (2017) Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatr 88:639–647.  https://doi.org/10.1136/jnnp-2017-315603 CrossRefGoogle Scholar
  73. 73.
    Sun X‑L, Ding J‑H, Fan Y et al (2007) Aquaporin 4 regulates the effects of ovarian hormones on monoamine neurotransmission. Biochem Biophys Res Commun 353:457–462.  https://doi.org/10.1016/j.bbrc.2006.12.040 CrossRefPubMedGoogle Scholar
  74. 74.
    Sun X‑L, Zhang J, Fan Y et al (2009) Aquaporin-4 deficiency induces subfertility in female mice. Fertil Steril 92:1736–1743.  https://doi.org/10.1016/j.fertnstert.2008.07.1785 CrossRefPubMedGoogle Scholar
  75. 75.
    Thomas C, Monteil-Ganiere C, Mirallié S et al (2017) A severe neonatal lymphopenia associated with administration of azathioprine to the mother in a context of Crohn’s disease. J Crohns Colitis.  https://doi.org/10.1093/ecco-jcc/jjx123 CrossRefGoogle Scholar
  76. 76.
    Trebst C, Jarius S, Berthele A et al (2014) Update on the diagnosis and treatment of neuromyelitis optica: Recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 261:1–16.  https://doi.org/10.1007/s00415-013-7169-7 CrossRefPubMedGoogle Scholar
  77. 77.
    Weinshenker BG, Wingerchuk DM (2017) Neuromyelitis spectrum disorders. Mayo Clin Proc 92:663–679.  https://doi.org/10.1016/j.mayocp.2016.12.014 CrossRefPubMedGoogle Scholar
  78. 78.
    Wildemann B, Jarius S, Paul F (2013) Neuromyelitis optica. Nervenarzt 84:436–441.  https://doi.org/10.1007/s00115-012-3602-x CrossRefPubMedGoogle Scholar
  79. 79.
    Wingerchuk DM (2009) Neuromyelitis optica: effect of gender. J Neurol Sci 286:18–23.  https://doi.org/10.1016/j.jns.2009.08.045 CrossRefPubMedGoogle Scholar
  80. 80.
    Zamvil SS, Slavin AJ (2015) Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol Neuroinflamm 2:e62.  https://doi.org/10.1212/NXI.0000000000000062 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zekeridou A, Lennon VA (2015) Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflamm 2:e110.  https://doi.org/10.1212/NXI.0000000000000110 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinDeutschland
  2. 2.Klinik für NeurologieSt. Josef Hospital, Ruhr Universität BochumBochumDeutschland
  3. 3.Experimental and Clinical Research CenterMax Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations