Der Nervenarzt

, Volume 89, Issue 4, pp 423–430 | Cite as

Kognitive Defizite nach Strahlentherapie von Hirntumoren

  • M. Buthut
  • R. Haussmann
  • A. Seidlitz
  • M. Krause
  • M. Donix
Übersichten

Zusammenfassung

Die Bestrahlung des Gehirns ist ein wichtiges Verfahren in der Behandlung maligner und benigner Erkrankungen mit zerebraler Beteiligung. Der mögliche akute oder chronische Einfluss auf kognitive Leistungen ist für die Alltagskompetenz und Lebensqualität der Patienten wichtig und muss gemeinsam mit einer primären Kontrolle der Erkrankungsprogression differenziert bewertet werden. Die Strahlensensibilität des Hippocampus und seine Bedeutung für Gedächtnisleistungen sind ein Beispiel dafür, dass kognitionsprotektive Strategien im Rahmen der Behandlungsplanung eine hohe Präzision der Therapieverfahren voraussetzen.

Schlüsselwörter

Protonentherapie Strahlendosis Kognitive Strahlenfolgen Gedächtnis Hippocampus 

Cognitive deficits following brain tumor radiation therapy

Abstract

Brain radiation is an important treatment option for malignant and benign brain diseases. The possible acute or chronic impact of radiation therapy on cognitive performance is important for daily functioning and quality of life. A detailed evaluation of cognitive impairment is important in the context of how to control disease progression. The susceptibility of the hippocampus to radiation-induced neuronal damage and its important role in memory highlight that therapeutic strategies require precision medicine.

Keywords

Proton therapy Radiotherapy dosage Radiation effects, cognitive Memory Hippocampus 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Buthut, R. Haussmann, A. Seidlitz, M. Krause und M. Donix geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Robert Koch Institut (2015) Beiträge zur Gesundheitsberichterstattung des Bundes: „Krebs in Deutschland“, 2011/2012Google Scholar
  2. 2.
    Jacola LM et al (2016) Cognitive, behaviour, and academic functioning in adolescent and young adult survivors of childhood acute lymphoblastic leukaemia: a report from the Childhood Cancer Survivor Study. Lancet Psychiatry 3(10):965–972CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sabater A et al (2016) Comparative neurocognitive effects of lithium and anticonvulsants in long-term stable bipolar patients. J Affect Disord 190:34CrossRefPubMedGoogle Scholar
  4. 4.
    Bodensohn R et al (2016) A prospective study on neurocognitive effects after primary radiotherapy in high-grade glioma patients. Int J Clin Oncol 21(4):642–650CrossRefPubMedGoogle Scholar
  5. 5.
    Clanton NR et al (2011) Fatigue, vitality, sleep, and neurocognitive functioning in adult survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer 117(11):2559–2568CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mohn C, Rund BR (2016) Neurocognitive profile in major depressive disorders: relationship to symptom level and subjective memory complaints. BMC Psychiatry 16:108.  https://doi.org/10.1186/s12888-016-0815-8 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li J et al (2008) Relationship between neurocognitive function and quality of life after whole-brain radiotherapy in patients with brain metastasis. Int J Radiat Oncol Biol Phys 71(1):64–70CrossRefPubMedGoogle Scholar
  8. 8.
    Li J, Bentzen SM, Renschler M, Mehta MP (2007) Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J Clin Oncol 25(10):1260–1266CrossRefPubMedGoogle Scholar
  9. 9.
    Burgess N, Maguire EA, O’keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641CrossRefPubMedGoogle Scholar
  10. 10.
    Tofilon PJ, Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiat Res 153(4):357–370CrossRefPubMedGoogle Scholar
  11. 11.
    Welzel G et al (2008) Acute neurocognitive impairment during cranial radiation therapy in patients with intracranial tumors. Strahlenther Onkol 184(12):647–654CrossRefPubMedGoogle Scholar
  12. 12.
    Greene-Schloesser D et al (2012) Radiation-induced brain injury: a review. Front Oncol 2:73.  https://doi.org/10.3389/fonc.2012.00073 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee YW, Cho HJ, Lee WH, Sonntag WE (2012) Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol Ther (Seoul) 20(4):357–370CrossRefGoogle Scholar
  14. 14.
    Coderre JA et al (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166(3):495–503CrossRefPubMedGoogle Scholar
  15. 15.
    Molad JA et al (2017) Mechanisms of post-radiation injury: cerebral microinfarction not a significant factor. J Neurooncol 131(2):277–281CrossRefPubMedGoogle Scholar
  16. 16.
    Lai R, Abrey LE, Rosenblum MK, Deangelis LM (2004) Treatment-induced leukoencephalopathy in primary CNS lymphoma: a clinical and autopsy study. Neurology 62(3):451–456CrossRefPubMedGoogle Scholar
  17. 17.
    Baker DG, Krochak RJ (1989) The response of the microvascular system to radiation: a review. Cancer Invest 7(3):287–294CrossRefPubMedGoogle Scholar
  18. 18.
    Mcgeer EG, Klegeris A, Mcgeer PL (2005) Inflammation, the complement system and the diseases of aging. Neurobiol Aging 26(Suppl):194–197Google Scholar
  19. 19.
    Querfurth HW, Laferla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344CrossRefPubMedGoogle Scholar
  20. 20.
    Meyers CA, Wefel JS (2003) The use of the mini-mental state examination to assess cognitive functioning in cancer trials: no ifs, ands, buts, or sensitivity. J Clin Oncol 21(19):3557–3558CrossRefPubMedGoogle Scholar
  21. 21.
    Armstrong C et al (1995) Biphasic patterns of memory deficits following moderate-dose partial-brain irradiation: neuropsychologic outcome and proposed mechanisms. J Clin Oncol 13(9):2263–2271CrossRefPubMedGoogle Scholar
  22. 22.
    Klein M et al (2002) Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet 360(9343):1361–1368CrossRefPubMedGoogle Scholar
  23. 23.
    Douw L et al (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 8(9):810–818CrossRefPubMedGoogle Scholar
  24. 24.
    Correa DD et al (2008) Longitudinal cognitive follow-up in low grade gliomas. J Neurooncol 86(3):321–327CrossRefPubMedGoogle Scholar
  25. 25.
    Postma TJ et al (2002) Radiotherapy-induced cerebral abnormalities in patients with low-grade glioma. Neurology 59(1):121–123CrossRefPubMedGoogle Scholar
  26. 26.
    Surma-Aho O et al (2001) Adverse long-term effects of brain radiotherapy in adult low-grade glioma patients. Neurology 56(10):1285–1290CrossRefPubMedGoogle Scholar
  27. 27.
    Olson JD, Riedel E, Deangelis LM (2000) Long-term outcome of low-grade oligodendroglioma and mixed glioma. Neurology 54(7):1442–1448CrossRefPubMedGoogle Scholar
  28. 28.
    Laack NN et al (2005) Cognitive function after radiotherapy for supratentorial low-grade glioma: a North Central Cancer Treatment Group prospective study. Int J Radiat Oncol Biol Phys 63(4):1175–1183CrossRefPubMedGoogle Scholar
  29. 29.
    Torres IJ et al (2003) A longitudinal neuropsychological study of partial brain radiation in adults with brain tumors. Neurology 60(7):1113–1118CrossRefPubMedGoogle Scholar
  30. 30.
    Vigliani MC, Sichez N, Poisson M, Delattre JY (1996) A prospective study of cognitive functions following conventional radiotherapy for supratentorial gliomas in young adults: 4‑year results. Int J Radiat Oncol Biol Phys 35(3):527–533CrossRefPubMedGoogle Scholar
  31. 31.
    Keime-Guibert F et al (2007) Radiotherapy for glioblastoma in the elderly. N Engl J Med 356(15):1527–1535CrossRefPubMedGoogle Scholar
  32. 32.
    Flechl B et al (2012) Neurocognitive and sociodemographic functioning of glioblastoma long-term survivors. J Neurooncol 109(2):331–339CrossRefPubMedGoogle Scholar
  33. 33.
    Scoccianti S et al (2012) Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J Neurooncol 108(2):291–308CrossRefPubMedGoogle Scholar
  34. 34.
    Shah AJ et al (2008) Progressive declines in neurocognitive function among survivors of hematopoietic stem cell transplantation for pediatric hematologic malignancies. J Pediatr Hematol Oncol 30(6):411–418CrossRefPubMedGoogle Scholar
  35. 35.
    Chang EL et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10(11):1037–1044CrossRefPubMedGoogle Scholar
  36. 36.
    Brown PD et al (2016) Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 316(4):401–409CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Aoyama H et al (2007) Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 68(5):1388–1395CrossRefPubMedGoogle Scholar
  38. 38.
    Sun A et al (2011) Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. J Clin Oncol 29(3):279–286CrossRefPubMedGoogle Scholar
  39. 39.
    Kiebert GM et al (1998) Quality of life after radiation therapy of cerebral low-grade gliomas of the adult: results of a randomised phase III trial on dose response (EORTC trial 22844). EORTC Radiotherapy Co-operative Group. Eur J Cancer 34(12):1902–1909CrossRefPubMedGoogle Scholar
  40. 40.
    Gondi V, Hermann BP, Mehta MP, Tome WA (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85(2):348–354CrossRefPubMedGoogle Scholar
  41. 41.
    Tsai PF et al (2015) Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study. Radiat Oncol 10:253.  https://doi.org/10.1186/s13014-015-0562-x CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mizumatsu S et al (2003) Extreme sensitivity of adult neurogenesis to low doses of X‑irradiation. Cancer Res 63(14):4021–4027PubMedGoogle Scholar
  43. 43.
    Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8(9):955–962CrossRefPubMedGoogle Scholar
  44. 44.
    Tang FR, Loke WK, Khoo BC (2017) Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging. Brain Dev 39(4):277–293CrossRefPubMedGoogle Scholar
  45. 45.
    Parihar VK, Limoli CL (2013) Cranial irradiation compromises neuronal architecture in the hippocampus. Proc Natl Acad Sci U S A 110(31):12822–12827CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765CrossRefPubMedGoogle Scholar
  47. 47.
    Raber J et al (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162(1):39–47CrossRefPubMedGoogle Scholar
  48. 48.
    Acharya MM et al (2009) Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc Natl Acad Sci U S A 106(45):19150–19155CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pospisil P et al (2015) Hippocampal proton MR spectroscopy as a novel approach in the assessment of radiation injury and the correlation to neurocognitive function impairment: initial experiences. Radiat Oncol 10:211CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pospisil P et al (2017) Post-WBRT cognitive impairment and hippocampal neuronal depletion measured by in vivo metabolic MR spectroscopy: results of prospective investigational study. Radiother Oncol 122(3):373–379CrossRefPubMedGoogle Scholar
  51. 51.
    Seibert TM et al (2017) Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. Int J Radiat Oncol Biol Phys 97(2):263–269CrossRefPubMedGoogle Scholar
  52. 52.
    Gondi V et al (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol 32(34):3810–3816CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lin SY et al (2015) Evaluating the impact of hippocampal sparing during whole brain radiotherapy on neurocognitive functions: a preliminary report of a prospective phase II study. Biomed J 38(5):439–449CrossRefPubMedGoogle Scholar
  54. 54.
    Munck Af Rosenschold P et al (2011) Photon and proton therapy planning comparison for malignant glioma based on CT, FDG-PET, DTI-MRI and fiber tracking. Acta Oncol 50(6):777–783CrossRefPubMedGoogle Scholar
  55. 55.
    Kazda T et al (2014) Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol 9:139.  https://doi.org/10.1186/1748-717X-9-139 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Correa DD et al (2016) Cognitive effects of donepezil therapy in patients with brain tumors: a pilot study. J Neurooncol 127(2):313–319CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shaw EG et al (2006) Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol 24(9):1415–1420CrossRefPubMedGoogle Scholar
  58. 58.
    Rapp SR et al (2015) Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J Clin Oncol 33(15):1653–1659CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Brown PD et al (2013) Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-oncology 15(10):1429–1437CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yazlovitskaya EM et al (2006) Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res 66(23):11179–11186CrossRefPubMedGoogle Scholar
  61. 61.
    Donix M, Bauer M (2016) Population studies of association between lithium and risk of neurodegenerative disorders. Curr Alzheimer Res 13(8):873–878CrossRefPubMedGoogle Scholar
  62. 62.
    Xia F, Yang E, Hallahan D, Lu B (2008) Lithium-mediated neuroprotection during cranial irradiation: a phase I trial. Neuro-oncology 10(5):887Google Scholar
  63. 63.
    Thotala D et al (2015) Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells. Oncotarget 6(33):35004–35022CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tommasino F, Durante M (2015) Proton radiobiology. Cancers 7(1):353–381CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mohan R, Grosshans D (2017) Proton therapy – present and future. Adv Drug Deliv Rev 109:26–44CrossRefPubMedGoogle Scholar
  66. 66.
    Harrabi SB et al (2016) Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma. Strahlenther Onkol 192(11):759–769CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Eaton BR, Yock T (2014) The use of proton therapy in the treatment of benign or low-grade pediatric brain tumors. Cancer J 20(6):403–408CrossRefPubMedGoogle Scholar
  68. 68.
    Kahalley LS et al (2016) Comparing intelligence quotient change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J Clin Oncol 34(10):1043–1049CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pulsifer MB et al (2015) Early cognitive outcomes following proton radiation in pediatric patients with brain and central nervous system tumors. Int J Radiat Oncol Biol Phys 93(2):400–407CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Shih HA et al (2015) Proton therapy for low-grade gliomas: results from a prospective trial. Cancer 121(10):1712–1719CrossRefPubMedGoogle Scholar
  71. 71.
    Sherman JC et al (2016) Neurocognitive effects of proton radiation therapy in adults with low-grade glioma. J Neurooncol 126(1):157–164CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • M. Buthut
    • 1
    • 2
  • R. Haussmann
    • 2
  • A. Seidlitz
    • 3
  • M. Krause
    • 3
    • 4
    • 5
    • 6
    • 7
  • M. Donix
    • 2
    • 8
  1. 1.Neurologische Klinik (Neustadt/Trachau)Städtisches Klinikum DresdenDresdenDeutschland
  2. 2.Klinik und Poliklinik für Psychiatrie und PsychotherapieUniversitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenDeutschland
  3. 3.Klinik und Poliklinik für Strahlentherapie und Radioonkologie, OncoRay – Nationales Zentrum für Strahlenforschung in der OnkologieMedizinische Fakultät und Universitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenDeutschland
  4. 4.Deutsches Konsortium für Translationale Krebsforschung (DKTK)DresdenDeutschland
  5. 5.Nationales Centrum für Tumorerkrankungen (NCT)DresdenDeutschland
  6. 6.Deutsches Krebsforschungszentrum (DKFZ)HeidelbergDeutschland
  7. 7.Institut für Radioonkologie – OncoRayHelmholtz-Zentrum Dresden-RossendorfDresdenDeutschland
  8. 8.Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Standort DresdenDresdenDeutschland

Personalised recommendations