Skip to main content
Log in

Genetische Risikovarianten beim Parkinson-Syndrom und anderen Bewegungsstörungen

Genetic risk variants in Parkinson’s disease and other movement disorders

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Bewegungsstörungen sind häufig komplex-genetische Erkrankungen, bei denen genetische Risikofaktoren eine große Rolle spielen. Während z. B. beim Parkinson-Syndrom (PS) monogene Ursachen für nur 2–5 % der Erkrankungen verantwortlich sind und dies meist junge Patienten mit einem frühen Erkrankungsbeginn (<40. Lebensjahr) betrifft, scheinen häufige genetische Varianten bei der Mehrheit der Patienten das Risiko zur Entstehung der Erkrankung zu erhöhen. Bisher wurden 24 solcher Risikovarianten gefunden. Beim Restless-legs-Syndrom (RLS) sind noch keine monogenen Formen, aber sechs verschiedene Risikogenorte bekannt. Weniger gut aufgeklärt sind Risikogene für essenziellen Tremor und Dystonien, wofür nur fünf bzw. zwei verschiedene Kandidaten beschrieben wurden, deren Rolle aber (noch) nicht in unabhängigen Studien untermauert werden konnte. Im Rahmen dieses Artikels wird ein Überblick über diese Gene, deren Funktion und mögliche ursachenspezifische therapeutische Interventionen gegeben.

Abstract

Movement disorders are often genetically complex with genetic risk factors playing a major role. For example, monogenic causes of Parkinson’s disease (PD) can be found in only 2–5% of patients who often have an early onset (<40 years). In the majority of patients, common genetic variants seem to contribute to the disease risk. To date, 24 genetic risk factors have been identified. For restless legs syndrome (RLS), six different risk variants have been reported but no monogenic cause is known yet. For the genetic risk factors of essential tremor and dystonia, which are less well studied, only five and two candidate variants, respectively, have been described but their roles still require independent confirmation. In this review, we provide an overview on the involved genes, their function, and discuss possible, disease mechanism-driven therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Marder K et al (1996) Risk of Parkinson’s disease among first-degree relatives: a community-based study. Neurology 47(1):155–160

    Article  CAS  PubMed  Google Scholar 

  2. Marras C et al (2016) Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov Disord 31(4):436–457

    Article  PubMed  Google Scholar 

  3. Polymeropoulos MH et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274(5290):1197–1199

    Article  CAS  PubMed  Google Scholar 

  4. Kumar KR, Lohmann K, Klein C (2012) Genetics of Parkinson disease and other movement disorders. Curr Opin Neurol 25(4):466–474

    Article  CAS  PubMed  Google Scholar 

  5. Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52(1):33–38

    Article  CAS  PubMed  Google Scholar 

  6. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320

    Article  CAS  PubMed  Google Scholar 

  7. Rothfuss O et al (2009) Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet 18(20):3832–3850

    Article  CAS  PubMed  Google Scholar 

  8. Rakovic A et al (2010) Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet 19(16):3124–3137

    Article  CAS  PubMed  Google Scholar 

  9. Nalls MA et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Healy DG et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Monfrini E, Di Fonzo A (2017) Leucine-Rich Repeat Kinase (LRRK2) genetics and Parkinson’s disease. Adv Neurobiol 14:3–30

    Article  PubMed  Google Scholar 

  12. Zimprich A et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607

    Article  CAS  PubMed  Google Scholar 

  13. Trinh J et al (2016) DNM3 and genetic modifiers of age of onset in LRRK2 Gly2019Ser parkinsonism: a genome-wide linkage and association study. Lancet Neurol 15(12):1248–1256

    Article  CAS  PubMed  Google Scholar 

  14. Brockmann K et al (2011) Clinical and brain imaging characteristics in leucine-rich repeat kinase 2‑associated PD and asymptomatic mutation carriers. Mov Disord 26(13):2335–2342

    Article  PubMed  Google Scholar 

  15. West AB et al (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102(46):16842–16847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dzamko N, Halliday GM (2012) An emerging role for LRRK2 in the immune system. Biochem Soc Trans 40(5):1134–1139

    Article  CAS  PubMed  Google Scholar 

  17. Pandey MK et al (2017) Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease. Nature 543(7643):108–112

    Article  CAS  PubMed  Google Scholar 

  18. Sidransky E et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361(17):1651–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sidransky E, Lopez G (2012) The link between the GBA gene and parkinsonism. Lancet Neurol 11(11):986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brockmann K et al (2011) GBA-associated PD presents with nonmotor characteristics. Neurology 77(3):276–280

    Article  CAS  PubMed  Google Scholar 

  21. Brockmann K et al (2015) GBA-associated Parkinson’s disease: reduced survival and more rapid progression in a prospective longitudinal study. Mov Disord 30(3):407–411

    Article  CAS  PubMed  Google Scholar 

  22. Neumann J et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132(Pt 7):1783–1794

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mazzulli JR et al (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanchez-Martinez A et al (2016) Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep 6:31380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simon-Sanchez J et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brockmann K et al (2013) SNCA: major genetic modifier of age at onset of Parkinson’s disease. Mov Disord 28(9):1217–1221

    Article  CAS  PubMed  Google Scholar 

  27. Ritz B et al (2012) alpha-Synuclein genetic variants predict faster motor symptom progression in idiopathic Parkinson disease. PLOS ONE 7(5):e36199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Compta Y et al (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134(Pt 5):1493–1505

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kang JH et al (2013) Association of cerebrospinal fluid beta-amyloid 1‑42, T‑tau, P‑tau181, and alpha-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol 70(10):1277–1287

    PubMed  PubMed Central  Google Scholar 

  30. Trenkwalder C, Hogl B, Winkelmann J (2009) Recent advances in the diagnosis, genetics and treatment of restless legs syndrome. J Neurol 256(4):539–553

    Article  CAS  PubMed  Google Scholar 

  31. Trenkwalder C et al (2016) Restless legs syndrome associated with major diseases: a systematic review and new concept. Neurology 86(14):1336–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Connor JR et al (2009) Altered dopaminergic profile in the putamen and substantia nigra in restless leg syndrome. Brain 132(Pt 9):2403–2412

    Article  PubMed  PubMed Central  Google Scholar 

  33. Skehan EB et al (2012) A novel locus for restless legs syndrome maps to chromosome 19p in an Irish pedigree. Neurogenetics 13(2):125–132

    Article  CAS  PubMed  Google Scholar 

  34. Winkelmann J et al (2011) Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLOS Genet 7(7):e1002171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khan FH et al (2017) Iron, dopamine, genetics, and hormones in the pathophysiology of restless legs syndrome. J Neurol. doi:10.1007/s00415-017-8431-1

    Google Scholar 

  36. Dauvilliers Y, Winkelmann J (2013) Restless legs syndrome: update on pathogenesis. Curr Opin Pulm Med 19(6):594–600

    Article  CAS  PubMed  Google Scholar 

  37. Louis ED, Ferreira JJ (2010) How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord 25(5):534–541

    Article  PubMed  Google Scholar 

  38. Louis ED (2016) Linking essential tremor to the cerebellum: neuropathological evidence. Cerebellum 15(3):235–242

    Article  PubMed  Google Scholar 

  39. Deng H, Le W, Jankovic J (2007) Genetics of essential tremor. Brain 130(Pt 6):1456–1464

    Article  PubMed  Google Scholar 

  40. Tio M, Tan EK (2016) Genetics of essential tremor. Parkinsonism Relat Disord 22(Suppl 1):S176–S178

    Article  PubMed  Google Scholar 

  41. Muller SH et al (2016) Genome-wide association study in essential tremor identifies three new loci. Brain 139(Pt 12):3163–3169

    Article  PubMed  PubMed Central  Google Scholar 

  42. Steeves TD et al (2012) The prevalence of primary dystonia: a systematic review and meta-analysis. Mov Disord 27(14):1789–1796

    Article  PubMed  Google Scholar 

  43. Albanese A et al (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord 28(7):863–873

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lohmann K, Klein C (2017) Update on the genetics of dystonia. Curr Neurol Neurosci Rep 17(3):26

    Article  PubMed  Google Scholar 

  45. Domingo A, Erro R, Lohmann K (2016) Novel dystonia genes: clues on disease mechanisms and the complexities of high-throughput sequencing. Mov Disord 31(4):471–477

    Article  CAS  PubMed  Google Scholar 

  46. Mok KY et al (2014) Genomewide association study in cervical dystonia demonstrates possible association with sodium leak channel. Mov Disord 29(2):245–251

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Q et al (2016) Association analysis of NALCN polymorphisms rs1338041 and rs61973742 in a Chinese population with isolated cervical dystonia. Parkinsons Dis:. doi:10.1155/2016/9281790

    PubMed  PubMed Central  Google Scholar 

  48. Lohmann K et al (2014) Genome-wide association study in musician’s dystonia: a risk variant at the arylsulfatase G locus? Mov Disord 29(7):921–927

    Article  CAS  PubMed  Google Scholar 

  49. Nibbeling E et al (2015) Accumulation of rare variants in the arylsulfatase G (ARSG) gene in task-specific dystonia. J Neurol 262(5):1340–1343

    Article  CAS  PubMed  Google Scholar 

  50. Escott-Price V et al (2015) Polygenic risk of Parkinson disease is correlated with disease age at onset. Ann Neurol 77(4):582–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Förderung

K. Brockmann erhält Forschungsförderung vom Bundesministerium für Bildung und Forschung (BMBF; 01EK1606D) von der Michel J Fox Stiftung und der Universität Tübingen. K. Lohmann erhält Forschungsförderung von der Deutschen Forschungsgemeinschaft (FOR2488) und dem Bundesministerium für Bildung und Forschung (DYSTRACT, 01GM1514B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Brockmann.

Ethics declarations

Interessenkonflikt

K. Brockmann und K. Lohmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockmann, K., Lohmann, K. Genetische Risikovarianten beim Parkinson-Syndrom und anderen Bewegungsstörungen. Nervenarzt 88, 713–719 (2017). https://doi.org/10.1007/s00115-017-0348-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-017-0348-5

Schlüsselwörter

Keywords

Navigation