Skip to main content
Log in

Ernährung und psychische Erkrankungen

Schwerpunkt depressive Störungen

Nutrition and mental diseases

Focus depressive disorders

  • CME
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Gegenwärtig wird ein möglicher Einsatz ernährungsbasierter Interventionen als ergänzende Maßnahme im Rahmen der Therapie psychischer Störungen diskutiert. Zugrunde liegende pathobiologische Mechanismen sind derzeit nicht abschließend geklärt. Plausibel ist ein Einfluss von Nährstoffen und Ernährungsmustern auf immun- und inflammatorische Prozesse, das Mikrobiom, die Leptin-melanokortinerge- und Hypothalamus-Hypophysen-Nebennierenrinden-Achse sowie auf Neurotransmitter des cholinergen, noradrenergen, dopaminergen bzw. serotonergen Systems und Neurotrophine.

In Beobachtungsstudien erwiesen sich traditionelle Ernährungsmuster wie die mediterrane Ernährung als protektiv für die seelische Gesundheit. In Bezug auf einzelne Nährstoffe zeigten Interventionsstudien bei Supplementation mit langkettigen, mehrfach ungesättigten Omega-3-Fettsäuren bei Depressionen kleine, aber signifikante Effekte. Die Studienlage bezüglich einer antidepressiven Wirkung einer Vitamin-D-Supplementation ist bislang insgesamt inkonsistent.

Abstract

Dietary interventions are currently being discussed as additional treatment options for mental disorders. The pathological mechanisms are not yet fully understood. It is hypothesized that certain nutrients and dietary pattern influence immune and inflammatory processes, the microbiome, the leptin-melanocortinergic axis and hypothalamic-pituitary axis, as well as neurotransmitters of the cholinergic, noradrenergic, dopaminergic and serotonergic signaling cascades and neurotrophins. Observational studies have shown that traditional dietary patterns, such as the Mediterranean diet have a protective effect on mental health. Supplementation with long-chain polyunsaturated omega-3 fatty acids showed small to medium but significant effect sizes in meta-analyses from depression trials. The evidence with respect to the antidepressive effect of vitamin D supplementation is currently inconclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Jacobi F, Hofler M, Strehle J et al (2015) Twelve-months prevalence of mental disorders in the German Health Interview and Examination Survey for Adults – Mental Health Module (DEGS1-MH): a methodological addendum and correction. Int J Methods Psychiatr Res 24(4):305–313

    Article  PubMed  Google Scholar 

  2. Statistisches Bundesamt (2010) Fachserie 12 Reihe 7.2 Gesundheit, Krankheitskosten, 2002, 2004, 2006, 2008. Statistisches Bundesamt, Wiesbaden

    Google Scholar 

  3. Sarris J, Logan AC, Akbaraly TN et al (2015) Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry 2(3):271–274

    Article  PubMed  Google Scholar 

  4. Berthoud HR, Morrison C (2008) The brain, appetite, and obesity. Annu Rev Psychol 59:55–92

    Article  PubMed  Google Scholar 

  5. Berthoud HR (2011) Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol 21(6):888–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Egecioglu E, Skibicka KP, Hansson C et al (2011) Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord 12(3):141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yeomans MR, Coughlan E (2009) Mood-induced eating. Interactive effects of restraint and tendency to overeat. Appetite 52(2):290–298

    Article  PubMed  Google Scholar 

  8. Gibson EL (2006) Emotional influences on food choice: sensory, physiological and psychological pathways. Physiol Behav 89(1):53–61

    Article  PubMed  CAS  Google Scholar 

  9. Volkow ND, Wang GJ, Tomasi D et al (2013) The addictive dimensionality of obesity. Biol Psychiatry 73(9):811–818

    Article  PubMed  PubMed Central  Google Scholar 

  10. Volkow ND, Wang GJ, Tomasi D et al (2013) Obesity and addiction: neurobiological overlaps. Obes Rev 14(1):2–18

    Article  CAS  PubMed  Google Scholar 

  11. Barsh GS, Schwartz MW (2002) Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 3(8):589–600

    CAS  PubMed  Google Scholar 

  12. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8(5):571–578

    Article  CAS  PubMed  Google Scholar 

  13. O’Rahilly S, Yeo GS, Farooqi IS (2004) Melanocortin receptors weigh in. Nat Med 10(4):351–352

    Article  PubMed  CAS  Google Scholar 

  14. Hinney A, Volckmar AL, Knoll N (2013) Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci 114:147–191

    Article  CAS  PubMed  Google Scholar 

  15. Lim BK, Huang KW, Grueter BA et al (2012) Anhedonia requires MC4R–mediated synaptic adaptations in nucleus accumbens. Nature 487(7406):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu J, Garza JC, Truong HV et al (2007) The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology 148(11):5531–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang GJ, Volkow ND, Fowler JS (2002) The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 6(5):601–609

    Article  CAS  PubMed  Google Scholar 

  18. Fehm HL, Kern W, Peters A (2006) The selfish brain: competition for energy resources. Prog Brain Res 153:129–140

    Article  CAS  PubMed  Google Scholar 

  19. Berridge KC, Ho CY, Richard JM et al (2010) The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 1350:43–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weltens N, Zhao D, Van Oudenhove L (2014) Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. Neurogastroenterol Motil 26(3):303–315

    Article  CAS  PubMed  Google Scholar 

  21. Berridge KC (2009) „Liking“ and „wanting“ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97(5):537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Opland DM, Leinninger GM, Myers MG Jr. (2010) Modulation of the mesolimbic dopamine system by leptin. Brain Res 1350:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Zessen R, van der Plasse G, Adan RA (2012) Contribution of the mesolimbic dopamine system in mediating the effects of leptin and ghrelin on feeding. Proc Nutr Soc 71(4):435–445

    Article  PubMed  CAS  Google Scholar 

  24. Meye FJ, Adan RA (2014) Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol Sci 35(1):31–40

    Article  CAS  PubMed  Google Scholar 

  25. Zheng H, Lenard NR, Shin AC et al (2009) Appetite control and energy balance regulation in the modern world: reward-driven brain overrides repletion signals. Int J Obes (Lond) 33(Suppl 2):S8–13

    Article  CAS  Google Scholar 

  26. Hebebrand J, Albayrak O, Adan R et al (2014) „Eating addiction“, rather than „food addiction“, better captures addictive-like eating behavior. Neurosci Biobehav Rev 47:295–306

    Article  PubMed  Google Scholar 

  27. Menzies JR, Skibicka KP, Leng G et al (2013) Ghrelin, reward and motivation. Endocr Dev 25:101–111

    CAS  PubMed  Google Scholar 

  28. Domingos AI, Vaynshteyn J, Voss HU et al (2011) Leptin regulates the reward value of nutrient. Nat Neurosci 14(12):1562–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frank S, Heni M, Moss A et al (2013) Long-term stabilization effects of leptin on brain functions in a leptin-deficient patient. PLOS ONE 8(6):e65893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37(1):137–162

    Article  CAS  PubMed  Google Scholar 

  31. Fritsche KL (2015) The science of fatty acids and inflammation. Adv Nutr 6(3):293–301

    Article  CAS  Google Scholar 

  32. Berk M, Williams LJ, Jacka FN et al (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11:200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Muhlig Y, Antel J, Focker M et al (2016) Are bidirectional associations of obesity and depression already apparent in childhood and adolescence as based on high-quality studies? A systematic review. Obes Rev 17(3):235–249

    Article  CAS  PubMed  Google Scholar 

  34. Mooney SJ, El-Sayed AM (2016) Stigma and the etiology of depression among the obese: An agent-based exploration. Soc Sci Med 148:1–7

    Article  PubMed  Google Scholar 

  35. Shelton RC, Miller AH (2011) Inflammation in depression: is adiposity a cause? Dialogues Clin Neurosci 13(1):41–53

    PubMed  Google Scholar 

  36. Luppino FS, de Wit LM, Bouvy PF et al (2010) Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 67(3):220–229

    Article  PubMed  Google Scholar 

  37. Messay B, Lim A, Marsland AL (2012) Current understanding of the bi-directional relationship of major depression with inflammation. Biol Mood Anxiety Disord 2(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Penninx BW, Milaneschi Y, Lamers F et al (2013) Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med 11:129

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sperner-Unterweger B, Kohl C, Fuchs D (2014) Immune changes and neurotransmitters: possible interactions in depression? Prog Neuropsychopharmacol Biol Psychiatry 48:268–276

    Article  CAS  PubMed  Google Scholar 

  40. Catena-Dell’Osso M, Rotella F, Dell’Osso A et al (2013) Inflammation, serotonin and major depression. Curr Drug Targets 14(5):571–577

    Article  PubMed  Google Scholar 

  41. Powell TR, McGuffin P, D’Souza UM et al (2014) Putative transcriptomic biomarkers in the inflammatory cytokine pathway differentiate major depressive disorder patients from control subjects and bipolar disorder patients. PLOS ONE 9(3):e91076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Appelhans BM, Whited MC, Schneider KL et al (2012) Depression severity, diet quality, and physical activity in women with obesity and depression. J Acad Nutr Diet 112(5):693–698

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132(6):2169–2180

    Article  CAS  PubMed  Google Scholar 

  44. Zeevi D, Korem T, Segal E (2016) Talking about cross-talk: the immune system and the microbiome. Genome Biol 17:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fond G, Boukouaci W, Chevalier G et al (2015) The „psychomicrobiotic“: targeting microbiota in major psychiatric disorders: a systematic review. Pathol Biol 63(1):35–42

    Article  CAS  PubMed  Google Scholar 

  46. Pusceddu MM, El Aidy S, Crispie F et al (2015) N‑3 Polyunsaturated Fatty Acids (PUFAs) reverse the impact of early-life stress on the gut microbiota. PLOS ONE 10(10):e0139721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Brennan SL, Henry MJ, Nicholson GC et al (2009) Socioeconomic status and risk factors for obesity and metabolic disorders in a population-based sample of adult females. Prev Med 49(2–3):165–171

    Article  PubMed  Google Scholar 

  48. U.S.-Department-of-Health-and-Human-Services, Dietary Patterns, Foods and Nutrients, and Health Outcomes, U.S.D.o.H.a.H. Services, Editor. 2015, U.S. Department of Health and Human Services.

  49. Saez-Almendros S, Obrador B, Bach-Faig A et al (2013) Environmental footprints of Mediterranean versus Western dietary patterns: beyond the health benefits of the Mediterranean diet. Environ Health 12:118

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13(1):3–9

    Article  CAS  PubMed  Google Scholar 

  51. Rahe C, Unrath M, Berger K (2014) Dietary patterns and the risk of depression in adults: a systematic review of observational studies. Eur J Nutr 53(4):997–1013

    Article  CAS  PubMed  Google Scholar 

  52. Trichopoulou A, Costacou T, Bamia C et al (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348(26):2599–2608

    Article  PubMed  Google Scholar 

  53. Ferrari R, Rapezzi C (2011) The Mediterranean diet: a cultural journey. Lancet 377(9779):1730–1731

    Article  PubMed  Google Scholar 

  54. Estruch R (2010) Anti-inflammatory effects of the Mediterranean diet: the experience of the PREDIMED study. Proc Nutr Soc 69(3):333–340

    Article  CAS  PubMed  Google Scholar 

  55. Estruch R, Ros E, Salas-Salvado J et al (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368(14):1279–1290

    Article  CAS  PubMed  Google Scholar 

  56. Esposito K, Marfella R, Ciotola M et al (2004) Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292(12):1440–1446

    Article  CAS  PubMed  Google Scholar 

  57. Giacosa A, Barale R, Bavaresco L et al (2013) Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev 22(1):90–95

    Article  CAS  PubMed  Google Scholar 

  58. Esposito K, Di Palo C, Maiorino MI et al (2011) Long-term effect of mediterranean-style diet and calorie restriction on biomarkers of longevity and oxidative stress in overweight men. Cardiol Res Pract 2011:293916. doi:10.4061/2011/293916

    Google Scholar 

  59. Knoops KT, de Groot LC, Kromhout D et al (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA 292(12):1433–1439

    Article  PubMed  Google Scholar 

  60. Willett WC, Sacks F, Trichopoulou A et al (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61(6 Suppl):1402–1406

    Google Scholar 

  61. Estruch R, Martinez-Gonzalez MA, Corella D et al (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145(1):1–11

    Article  PubMed  Google Scholar 

  62. Sofi F, Abbate R, Gensini GF et al (2010) Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92(5):1189–1196

    Article  CAS  PubMed  Google Scholar 

  63. Knopman DS (2009) Mediterranean diet and late-life cognitive impairment: a taste of benefit. JAMA 302(6):686–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vernaglione L (2009) The Mediterranean diet: a matter of history, tradition, culture and health. J Nephrol 22(Suppl 14):149–158

    PubMed  Google Scholar 

  65. Lai JS, Hiles S, Bisquera A et al (2014) A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr 99(1):181–197

    Article  CAS  PubMed  Google Scholar 

  66. Quirk SE, Williams LJ, O’Neil A et al (2013) The association between diet quality, dietary patterns and depression in adults: a systematic review. BMC Psychiatry 13:175

    Article  PubMed  PubMed Central  Google Scholar 

  67. Psaltopoulou T, Sergentanis TN, Panagiotakos DB et al (2013) Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol 74(4):580–591

    Article  PubMed  Google Scholar 

  68. O’Neil A, Berk M, Itsiopoulos C et al (2013) A randomised, controlled trial of a dietary intervention for adults with major depression (the „SMILES“ trial): study protocol. BMC Psychiatry 13:114

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sanchez-Villegas A, Martinez-Gonzalez MA, Estruch R et al (2013) Mediterranean dietary pattern and depression: the PREDIMED randomized trial. BMC Med 11:208

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sanchez-Villegas A, Martinez-Gonzalez MA (2013) Diet, a new target to prevent depression? BMC Med 11:3

    Article  PubMed  PubMed Central  Google Scholar 

  71. Arterburn LM, Hall EB, Oken H (2006) Distribution, interconversion, and dose response of n‑3 fatty acids in humans. Am J Clin Nutr 83(6 Suppl):1467–1476

    Google Scholar 

  72. Harris WS, Von Schacky C (2004) The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev Med 39(1):212–220

    Article  CAS  PubMed  Google Scholar 

  73. Bradbury J (2011) Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients 3(5):529–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Janssen CI, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53:1–17

    Article  CAS  PubMed  Google Scholar 

  75. Schmitz G, Ecker J (2008) The opposing effects of n‑3 and n‑6 fatty acids. Prog Lipid Res 47(2):147–155

    Article  CAS  PubMed  Google Scholar 

  76. Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährung (2015) Referenzwerte für die Nährstoffzufuhr. Vol. 2, 1. Aufl. DGE, Bonn

    Google Scholar 

  77. Abedi E, Sahari MA (2014) Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr 2(5):443–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jungvogel A, Wendt I, Schäbethal K et al (2013) Überarbeitet: Die 10 Regeln der DGE. Ernährungs Umsch 11:M644–M645

    Google Scholar 

  79. Krems C, Walter C, Heuer T et al (2012) Lebensmittelverzehr und Nährstoffzufuhr – Ergebnisse der Nationalen Verzehrsstudie II. In: Deutsche Gesellschaft für Ernährung (Hrsg) Ernährungsbericht 2012. Deutsche Gesellschaft für Ernährung, Bonn

    Google Scholar 

  80. Krems C, Walter CH, Hoffmann T (2013) I. Nationale Verzehrsstudie II. Lebensmittelverzehr und Nährstoffzufuhr auf Basis von 24 h-Recalls. http://www.mri.bund.de/fileadmin/MRI/Institute/EV/Lebensmittelverzehr_N%C3%A4hrstoffzufuhr_24h-recalls-neu.pdf. Zugegriffen: 15.12.2016

    Google Scholar 

  81. Hibbeln JR (1998) Fish consumption and major depression. Lancet 351(9110):1213

    Article  CAS  PubMed  Google Scholar 

  82. Peet M (2004) International variations in the outcome of schizophrenia and the prevalence of depression in relation to national dietary practices: an ecological analysis. Br J Psychiatry 184:404–408

    Article  PubMed  Google Scholar 

  83. Lin PY, Huang SY, Su KP (2010) A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry 68(2):140–147

    Article  CAS  PubMed  Google Scholar 

  84. Pottala JV, Talley JA, Churchill SW et al (2012) Red blood cell fatty acids are associated with depression in a case-control study of adolescents. Prostaglandins Leukot Essent Fatty Acids 86(4–5):161–165

    Article  CAS  PubMed  Google Scholar 

  85. Hawkey E, Nigg JT (2014) Omega-3 fatty acid and ADHD: blood level analysis and meta-analytic extension of supplementation trials. Clin Psychol Rev 34(6):496–505

    Article  PubMed  PubMed Central  Google Scholar 

  86. Al-Farsi YM, Waly MI, Deth RC et al (2013) Impact of nutrition on serum levels of docosahexaenoic acid among Omani children with autism. Nutrition 29(9):1142–1146

    Article  CAS  PubMed  Google Scholar 

  87. Brigandi SA, Shao H, Qian SY et al (2015) Autistic children exhibit decreased levels of essential Fatty acids in red blood cells. Int J Mol Sci 16(5):10061–10076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Appleton KM, Sallis HM, Perry R et al (2016) Omega-3 Fatty acids for major depressive disorder in adults: an abridged Cochrane review. BMJ Open 6(3):e010172

    Article  PubMed  PubMed Central  Google Scholar 

  89. Grosso G, Pajak A, Marventano S et al (2014) Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLOS ONE 9(5):e96905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mocking RJ, Harmsen I, Assies J et al (2016) Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry 6:e756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nemets H, Nemets B, Apter A et al (2006) Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry 163(6):1098–1100

    Article  PubMed  Google Scholar 

  92. Rapaport MH, Nierenberg AA, Schettler PJ et al (2016) Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Mol Psychiatry 21(1):71–79

    Article  CAS  PubMed  Google Scholar 

  93. von Schacky C (2014) Omega-3 index and cardiovascular health. Nutrients 6(2):799–814

    Article  CAS  Google Scholar 

  94. Vieth R (2004) Why „Vitamin D“ is not a hormone, and not a synonym for 1,25-dihydroxy-vitamin D, its analogs or deltanoids. J Steroid Biochem Mol Biol 89–90(1–5):571–573

    Article  PubMed  CAS  Google Scholar 

  95. Ryan JW, Anderson PH, Morris HA (2015) Pleiotropic activities of vitamin D receptors – adequate activation for multiple health outcomes. Clin Biochem Rev 36(2):53–61

    PubMed  PubMed Central  Google Scholar 

  96. Pike JW, Meyer MB, Martowicz ML et al (2010) Emerging regulatory paradigms for control of gene expression by 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 121(1–2):130–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Eyles DW, Smith S, Kinobe R et al (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29(1):21–30

    Article  CAS  PubMed  Google Scholar 

  98. Binkley N, Wiebe D (2013) Clinical controversies in vitamin D: 25(OH)D measurement, target concentration, and supplementation. J Clin Densitom 16(4):402–408

    Article  PubMed  Google Scholar 

  99. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  CAS  PubMed  Google Scholar 

  100. Deutsche Gesellschaft f. Ernährung (DGE), Österreichische Gesellschaft f. Ernährung (ÖGE), Schweizerische Gesellschaft f. Ernährungsforschung (SGE), Schweizerische Gesellschaft f. Ernährungsforschung (SGE), et al (2008) Referenzwerte für die Nährstoffzufuhr, ed. Deutsche Gesellschaft f. Ernährung. Umschau, Neustadt an der Weinstraße

    Google Scholar 

  101. Binkley N, Sempos CT, Vitamin D Standardization Program (2014) Standardizing vitamin D assays: the way forward. J Bone Miner Res 29(8):1709–1714

    Article  CAS  PubMed  Google Scholar 

  102. Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Institute of Medicine (2011) Dietary reference intakes for calcium and vitamin D

  103. Linseisen J, Bechthold A, Bischoff-Ferrari HA et al (2011) DGE-Stellungnahme: Vitamin D und Prävention ausgewählter chronischer Krankheiten. https://www.dge.de/fileadmin/public/doc/ws/stellungnahme/DGE-Stellungnahme-VitD-111220.pdf. Zugegriffen: 15.12.2016

    Google Scholar 

  104. Bener A, Kamal M (2014) Predict attention deficit hyperactivity disorder? Evidence – based medicine. Glob J Health Sci 6(2):47–57

    Google Scholar 

  105. Bener A, Khattab AO, Al-Dabbagh MM (2014) Is high prevalence of vitamin D deficiency evidence for autism disorder?: In a highly endogamous population. J Pediatr Neurosci 9(3):227–233

    Article  PubMed  PubMed Central  Google Scholar 

  106. Goksugur SB, Tufan AE, Semiz M et al (2014) Vitamin D status in children with attention-deficit-hyperactivity disorder. Pediatr Int 56(4):515–519

    Article  CAS  PubMed  Google Scholar 

  107. Kamal M, Bener A, Ehlayel MS (2014) Is high prevalence of vitamin D deficiency a correlate for attention deficit hyperactivity disorder? Atten Defic Hyperact Disord 6(2):73–78

    Article  PubMed  Google Scholar 

  108. Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34(1):47–64

    Article  CAS  PubMed  Google Scholar 

  109. Verduijn J, Milaneschi Y, Schoevers RA et al (2015) Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression. Transl Psychiatry 5:e649

    Article  CAS  PubMed  Google Scholar 

  110. Zhu DM, Liu Y, Zhang AG et al (2015) High levels of vitamin D in relation to reduced risk of schizophrenia with elevated C‑reactive protein. Psychiatry Res 228(3):565–570

    Article  CAS  PubMed  Google Scholar 

  111. Fernell E, Bejerot S, Westerlund J et al (2015) Autism spectrum disorder and low vitamin D at birth: a sibling control study. Mol Autism 6:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Gong ZL, Luo CM, Wang L et al (2014) Serum 25-hydroxyvitamin D levels in Chinese children with autism spectrum disorders. Neuroreport 25(1):23–27

    CAS  PubMed  Google Scholar 

  113. Saad K, Abdel-Rahman AA, Elserogy YM et al (2015) Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci 19:346. doi:10.1179/1476830515y.0000000019

    Article  PubMed  CAS  Google Scholar 

  114. Milaneschi Y, Hoogendijk W, Lips P et al (2014) The association between low vitamin D and depressive disorders. Mol Psychiatry 19(4):444–451

    Article  CAS  PubMed  Google Scholar 

  115. Jozefowicz O, Rabe-Jablonska J, Wozniacka A et al (2014) Analysis of vitamin D status in major depression. J Psychiatr Pract 20(5):329–337

    Article  PubMed  Google Scholar 

  116. Belzeaux R, Boyer L, Ibrahim EC et al (2015) Mood disorders are associated with a more severe hypovitaminosis D than schizophrenia. Psychiatry Res 229:613. doi:10.1016/j.psychres.2015.04.039

    Article  CAS  PubMed  Google Scholar 

  117. Jaaskelainen T, Knekt P, Suvisaari J et al (2015) Higher serum 25-hydroxyvitamin D concentrations are related to a reduced risk of depression. Br J Nutr 113(9):1418–1426

    Article  PubMed  CAS  Google Scholar 

  118. Jaddou HY, Batieha AM, Khader YS et al (2012) Depression is associated with low levels of 25-hydroxyvitamin D among Jordanian adults: results from a national population survey. Eur Arch Psychiatry Clin Neurosci 262(4):321–327

    Article  CAS  PubMed  Google Scholar 

  119. Brouwer-Brolsma EM, Feskens EJ, Steegenga WT et al (2013) Associations of 25-hydroxyvitamin D with fasting glucose, fasting insulin, dementia and depression in European elderly: the SENECA study. Eur J Nutr 52(3):917–925

    Article  CAS  PubMed  Google Scholar 

  120. Gowda U, Mutowo MP, Smith BJ et al (2015) Vitamin D supplementation to reduce depression in adults: meta-analysis of randomized controlled trials. Nutrition 31(3):421–429

    Article  CAS  PubMed  Google Scholar 

  121. Spedding S (2014) Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients 6(4):1501–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li G, Mbuagbaw L, Samaan Z et al (2014) Efficacy of vitamin D supplementation in depression in adults: a systematic review. J Clin Endocrinol Metab 99(3):757–767

    Article  CAS  PubMed  Google Scholar 

  123. Shaffer JA, Edmondson D, Wasson LT et al (2014) Vitamin D supplementation for depressive symptoms: a systematic review and meta-analysis of randomized controlled trials. Psychosom Med 76(3):190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sherrington C, Herbert RD, Maher CG et al (2000) PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man Ther 5(4):223–226

    Article  CAS  PubMed  Google Scholar 

  125. Khoraminya N, Tehrani-Doost M, Jazayeri S et al (2013) Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. Aust N Z J Psychiatry 47(3):271–275

    Article  PubMed  Google Scholar 

  126. Mozaffari-Khosravi H, Nabizade L, Yassini-Ardakani SM et al (2013) The effect of 2 different single injections of high dose of vitamin D on improving the depression in depressed patients with vitamin D deficiency: a randomized clinical trial. J Clin Psychopharmacol 33(3):378–385

    Article  CAS  PubMed  Google Scholar 

  127. Straßburg A (2010) Ernährungserhebungen: Methoden und Instrumente. Ernährungs Umsch 8:422–430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Libuda.

Ethics declarations

Interessenkonflikt

L. Libuda, J. Antel, J. Hebebrand und M. Föcker geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

CME-Fragebogen

CME-Fragebogen

Welche Regelkreise/Prozesse werden durch den Energiegehalt einer Mahlzeit unmittelbar beeinflusst?

Die Stressachse

Das Komplementsystem

Die homöostatische Regulation

Das Belohnungssystem

Die Expressionsraten von Wachstumsfaktoren

Welche klinischen Hinweise hat man für den Zusammenhang zwischen subchronischem Entzündungsstatus und einer depressiver Störung?

Die Serotoninspiegel im Plasma sind ungewöhnlich hoch.

Biomarker für die Transkription inflammatorischer Zytokine werden bei depressiven Patienten vermehrt gefunden.

Die HPA-Achse ist runterreguliert.

n-3 LC-PUFA sind im Plasma kaum noch nachweisbar.

Es werden weniger Eicosanoide gebildet.

Welchen Vorteil haben Ernährungsmusteranalysen im Vergleich zu Untersuchungen von Effekten einzelner Nährstoffe oder Lebensmittel?

Sie berücksichtigen Interaktionen von Nährstoffen und Lebensmitteln untereinander.

Sie sind für den Untersucher leichter durchzuführen.

Sie sind unabhängig von kulturellen Einflüssen.

Sie beruhen nicht auf Selbstangaben der Patienten.

Ernährungsmuster werden nicht durch Alter und Geschlecht beeinflusst.

Was versteht man unter dem a priori--Ansatz der Ernährungsmusteranalyse?

Fokussierung auf die Untersuchung einzelner Lebensmittel und Nährstoffe.

Vergleich der individuellen Ernährung mit vorab definierten Standards.

Zusammenfassung beobachteter Daten in einer Population durch statistische Modellierung.

Eine grundsätzlich retrospektive Erfassung der individuellen Ernährung.

Neben einer Ernährungserhebung erfolgen Blutanalysen zur Bestimmung des Ernährungsmusters.

Was ist für die mediterrane Ernährung charakteristisch?

Hoher Verzehr tierischer Lebensmittel

Hoher Anteil pflanzlicher Lebensmittel

Maiskeimöl wird als Hauptfettquelle verwendet

Hohe Zufuhr gesättigter Fettsäuren

Wein wird in großen Mengen getrunken

Die Fettsäurezusammensetzung welches Kompartiments gilt als Indikator für die langfristige n-3 LC-PUFA Versorgung?

Haare

Speichel

Plasma

Serum

Erythrozyten

Wie hoch ist der Grenzwert des IoM für eine optimale Vitamin-D-Versorgung und worauf beruht er?

Mindestens 40 nmol/l; reduziertes Risiko von Herzkreislauferkrankungen.

Mindestens 50 nmol/l; Vermeidung von Erkrankungen des Skeletts.

Mindestens 60 nmol/l; Senkung der Häufigkeit von Infektionserkrankungen.

Mindestens 70 nmol/l; reduziertes Typ-2-Diabetes-Risiko.

Mindestens 80 nmol/l; reduziertes Risiko von Nierenerkrankungen.

Wie ist die wissenschaftliche Evidenz für Ernährungseffekte auf Depressionen zu bewerten?

Die Evidenz für Effekte von Ernährungsmustern, Vitamin D und n-3 LC-PUFA ist insgesamt überzeugend.

Die Evidenz für Effekte von Ernährungsmuster und n-3 LC-PUFA ist überzeugend, die Evidenz für Vitamin D dagegen widersprüchlich.

Die Evidenz für Effekte der n-3 LC-PUFA ist überzeugend, für Ernährungsmuster unzureichend und für Vitamin D widersprüchlich, bei qualitativ hochwertigen Interventionsstudien aber vielversprechend.

Die Evidenz für Effekte von Ernährungsmuster ist überzeugend, während die Evidenz für Vitamin D und n-3 LC-PUFA widersprüchlich ist.

Die Evidenz für Effekte von Ernährungsmuster, Vitamin D und n-3 LC-PUFA ist insgesamt widersprüchlich.

Welche methodischen Schwächen hatten bisherige Interventionsstudien zu den Effekten von n-3 LC-PUFA-Supplementen und Vitamin D häufig?

Die Studienergebnisse wurden nicht statistisch ausgewertet und die Gruppenzugehörigkeit nicht randomisiert zugeordnet.

Die Studiendauer war insgesamt zu lang und es haben nur Männer teilgenommen.

Die Studien wurden nicht placebokontrolliert durchgeführt und der Nährstoffstatus am Ende der Studie nicht kontrolliert.

Die Nährstoffmenge in den verwendeten Supplementen war zu hoch und die Nebenwirkungen zu stark.

Die Probandenzahl war gering und der Versorgungsstatus vor Studienbeginn wurde nicht berücksichtigt.

Welche Lebensmittelgruppe ist gleichzeitig eine gute Quelle für Vitamin D und für n-3 LC-PUFA FA?

Gemüse

Obst

Reis

Fisch

Hülsenfrüchte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libuda, L., Antel, J., Hebebrand, J. et al. Ernährung und psychische Erkrankungen. Nervenarzt 88, 87–101 (2017). https://doi.org/10.1007/s00115-016-0262-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-016-0262-2

Schlüsselwörter

Keywords

Navigation