Skip to main content
Log in

Zelldepletion und Myeloablation bei neuroimmunologischen Erkrankungen

Cell depletion and myoablation for neuroimmunological diseases

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Therapie autoimmuner Erkrankungen des Nervensystems fußt auf Eingriffen in die zugrunde liegenden Immunprozesse.

Ziel der Studie

Eine Zusammenfassung der zur Verfügung stehenden zelldepletierenden und myeloablativen Konzepte bei neuroimmunologischen Erkrankungen.

Methoden

Auswertung der Studienlage bezüglich der Multiplen Sklerose (MS) als bestuntersuchter neuroimmunologischer Entität.

Ergebnisse

Es stehen drei Konzepte zur Verfügung: Klassische Immunsuppressiva wie Azathioprin, Mitoxantron und Cyclophosphamid erreichen durch eine generelle Leukopenie moderate Effekte auf die Krankheitsaktivität. Die Myeloablation mit anschließender autologer Stammzelltransplantation ist eine hochwirksame Behandlung mit oft langanhaltendem Effekt. Sie ist verbunden mit schwerwiegenden, teils lebensgefährlichen Nebenwirkungen. Selektive Antikörper gegen Lymphozytensubpopulationen wie Alemtuzumab (Anti-CD52), Rituximab und Ocrelizumab (beide Anti-CD20) zeigen eine hohe Wirksamkeit auf die entzündliche Krankheitsaktivität bei der schubförmigen MS. Für Ocrelizumab konnte außerdem ein Effekt bei der primär progredienten MS gezeigt werden.

Diskussion

Die präsentierten zelldepletierenden oder myeloablativen Therapien sind zumeist hochwirksam, aber mit signifikanten Risiken verbunden. Ihr Einsatz sollte daher im Vergleich mit den zahlreicher werdenden alternativen Methoden der Immunmodulation sorgsam abgewogen werden.

Abstract

Background

The treatment of autoimmune disorders of the nervous system is based on interventions for the underlying immune phenomena.

Objective

To summarize concepts of cell depletion and myeloablation studied in the context of neuroimmunological disorders.

Method

Evaluation of the available literature on multiple sclerosis as the most widely studied neuroimmunological entity.

Results

Three concepts have been introduced: classical immunosuppressants, such as azathioprine, mitoxantrone and cyclophosphamide exert general lymphopenic effects and thereby moderately decrease disease activity. Myeloablative regimens combined with autologous hematopoietic stem cell transplantation have a profound and in most cases long-lasting impact on autoimmunity at the cost of potentially life-threatening side effects. Alemtuzumab (anti-CD52), rituximab and ocrelizumab (both anti-CD20) are depleting antibodies directed against certain lymphocyte subsets and substantially ameliorate disease activity in relapsing-remitting multiple sclerosis. Ocrelizumab also shows efficacy in the primary progressive form of multiple sclerosis.

Conclusions

Most of the presented cell-depleting and myeloablative therapies are highly effective treatment options but are also accompanied by significant risks. In the context of the increasing number of alternative immunomodulatory options the indications for use should be cautiously considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Ahrens N, Salama A, Haas J (2001) Mycophenolate-mofetil in the treatment of refractory multiple sclerosis. J Neurol 248:713–714

    Article  CAS  PubMed  Google Scholar 

  2. Anonymous (1991) The Canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. The Canadian Cooperative Multiple Sclerosis Study Group. Lancet 337:441–446

    Google Scholar 

  3. Ashtari F, Savoj MR (2011) Effects of low dose methotrexate on relapsing-remitting multiple sclerosis in comparison to Interferon beta-1alpha: A randomized controlled trial. J Res Med Sci 16:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Azzopardi L, Cox AL, Mccarthy CL et al (2015) Alemtuzumab use in neuromyelitis optica spectrum disorders: a brief case series. J Neurol 263(1):25–29. doi:10.1007/s00415-015-7925-y

    Article  Google Scholar 

  5. Bakhuraysah MM, Siatskas C, Petratos S (2016) Hematopoietic stem cell transplantation for multiple sclerosis: is it a clinical reality? Stem Cell Res Ther 7:12

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brinkman CJ, Nillesen WM, Hommes OR (1983) T‑cell subpopulations in blood and cerebrospinal fluid of multiple sclerosis patients: effect of cyclophosphamide. Clin Immunol Immunopathol 29:341–348

    Article  CAS  PubMed  Google Scholar 

  7. Buggins AG, Mufti GJ, Salisbury J et al (2002) Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood 100:1715–1720

    CAS  PubMed  Google Scholar 

  8. Burman J, Iacobaeus E, Svenningsson A et al (2014) Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry 85:1116–1121

    Article  PubMed  Google Scholar 

  9. Casetta I, Iuliano G, Filippini G (2007) Azathioprine for multiple sclerosis. Cochrane Database Syst Rev. doi:10.1002/14651858.CD003982.pub2

    PubMed  Google Scholar 

  10. Cohen JA, Coles AJ, Arnold DL et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380:1819–1828

    Article  CAS  PubMed  Google Scholar 

  11. Coles A (2015) Newer therapies for multiple sclerosis. Ann Indian Acad Neurol 18:S30–34

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coles AJ, Twyman CL, Arnold DL et al (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380:1829–1839

    Article  CAS  PubMed  Google Scholar 

  13. Currier RD, Haerer AF, Meydrech EF (1993) Low dose oral methotrexate treatment of multiple sclerosis: a pilot study. J Neurol Neurosurg Psychiatry 56:1217–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dalakas MC (2015) Future perspectives in target-specific immunotherapies of myasthenia gravis. Ther Adv Neurol Disord 8:316–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farge D, Labopin M, Tyndall A et al (2010) Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica 95:284–292

    Article  PubMed  Google Scholar 

  16. Frohman EM, Brannon K, Racke MK et al (2004) Mycophenolate mofetil in multiple sclerosis. Clin Neuropharmacol 27:80–83

    Article  CAS  PubMed  Google Scholar 

  17. Gastaldi M, Thouin A, Vincent A (2016) Antibody-mediated autoimmune encephalopathies and immunotherapies. Neurotherapeutics 13:147–162

    Article  CAS  PubMed  Google Scholar 

  18. Gobbini MI, Smith ME, Richert ND et al (1999) Effect of open label pulse cyclophosphamide therapy on MRI measures of disease activity in five patients with refractory relapsing-remitting multiple sclerosis. J Neuroimmunol 99:142–149

    Article  CAS  PubMed  Google Scholar 

  19. Hartung HP, Gonsette R, Konig N et al (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025

    Article  PubMed  Google Scholar 

  20. Hauser SL, Dawson DM, Lehrich JR et al (1983) Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med 308:173–180

    Article  CAS  PubMed  Google Scholar 

  21. Hauser SL, Waubant E, Arnold DL et al (2008) B‑cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  CAS  PubMed  Google Scholar 

  22. Havrdova E, Zivadinov R, Krasensky J et al (2009) Randomized study of interferon beta-1a, low-dose azathioprine, and low-dose corticosteroids in multiple sclerosis. Mult Scler 15:965–976

    Article  CAS  PubMed  Google Scholar 

  23. Jones JL, Phuah CL, Cox AL et al (2009) IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J Clin Invest 119:2052–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Khan OA, Zvartau-Hind M, Caon C et al (2001) Effect of monthly intravenous cyclophosphamide in rapidly deteriorating multiple sclerosis patients resistant to conventional therapy. Mult Scler 7:185–188

    Article  CAS  PubMed  Google Scholar 

  25. Killian JM, Bressler RB, Armstrong RM et al (1988) Controlled pilot trial of monthly intravenous cyclophosphamide in multiple sclerosis. Arch Neurol 45:27–30

    Article  CAS  PubMed  Google Scholar 

  26. Likosky WH, Fireman B, Elmore R et al (1991) Intense immunosuppression in chronic progressive multiple sclerosis: the Kaiser study. J Neurol Neurosurg Psychiatry 54:1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mancardi GL, Sormani MP, Di Gioia M et al (2012) Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler 18:835–842

    Article  CAS  PubMed  Google Scholar 

  28. Mancardi GL, Sormani MP, Gualandi F et al (2015) Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 84:981–988

    Article  CAS  PubMed  Google Scholar 

  29. Marmont AM (1998) Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 83:733–743

    CAS  PubMed  Google Scholar 

  30. Montalban X (2015) Efficacy and safety of ocrelizumab in primary progressive multiple sclerosis - results of the placebo-controlled, double-blind, Phase III ORATORIO study. ECTRIMS, Barcelona, 7–10 October 2015

    Google Scholar 

  31. Nash RA, Hutton GJ, Racke MK et al (2015) High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3‑year interim report. JAMA Neurol 72:159–169

    Article  PubMed  Google Scholar 

  32. Newman MP, Blum S, Wong RC et al (2016) Autoimmune encephalitis. Intern Med J 46:148–157

    Article  CAS  PubMed  Google Scholar 

  33. Pasquini MC, Griffith LM, Arnold DL et al (2010) Hematopoietic stem cell transplantation for multiple sclerosis: collaboration of the CIBMTR and EBMT to facilitate international clinical studies. Biol Blood Marrow Transplant 16:1076–1083

    Article  PubMed  PubMed Central  Google Scholar 

  34. Press R, Askmark H, Svenningsson A et al (2014) Autologous haematopoietic stem cell transplantation: a viable treatment option for CIDP. J Neurol Neurosurg Psychiatry 85:618–624

    Article  CAS  PubMed  Google Scholar 

  35. Rebeiro P, Moore J (2016) The role of autologous haemopoietic stem cell transplantation in the treatment of autoimmune disorders. Intern Med J 46:17–28

    Article  CAS  PubMed  Google Scholar 

  36. Rommer PS, Dorner T, Freivogel K et al (2016) Safety and clinical outcomes of Rituximab treatment in patients with multiple sclerosis and neuromyelitis optica: experience from a national online registry (GRAID). J Neuroimmune Pharmacol 11:1–8

    Article  CAS  PubMed  Google Scholar 

  37. Ruck T, Bittner S, Wiendl H et al (2015) Alemtuzumab in multiple sclerosis: mechanism of action and beyond. Int J Mol Sci 16:16414–16439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sprenger T, Kappos L (2012) Alemtuzumab for multiple sclerosis: who and when to treat? Lancet 380:1795–1797

    Article  PubMed  Google Scholar 

  39. Stankiewicz JM, Kolb H, Karni A et al (2013) Role of immunosuppressive therapy for the treatment of multiple sclerosis. Neurotherapeutics 10:77–88

    Article  CAS  PubMed  Google Scholar 

  40. Ten Berge RJ, van Walbeek HK, Schellekens PT (1982) Evaluation of the immunosuppressive effects of cyclophosphamide in patients with multiple sclerosis. Clin Exp Immunol 50:495–502

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Weinstock-Guttman B, Gallagher E, Baier M et al (2004) Risk of bone loss in men with multiple sclerosis. Mult Scler 10:170–175

    Article  PubMed  Google Scholar 

  42. Wiendl H (2015) Diagnostik und Therapie der Myasthenia gravis und des Lambert-Eaton-Syndroms. DGN-Leitlinie, http://www.awmf.org/leitlinien/detail/ll/030-087.html. Zugegriffen: 1. Juli 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Derfuss.

Ethics declarations

Interessenkonflikt

Das Universitätsspital Basel hat in den vergangenen 3 Jahren folgende Unterstützungen erhalten, die ausschließlich für Forschungszwecke eingesetzt wurden: Entgelte für Steering Committees, Advisory Boards und Beratungen von Actelion, Alkermes, Almirall, Bayer, Biogen, Excemed, GeNeuro SA, Genzyme, Merck, Mitsubishi Pharma, Novartis, Receptos, Roche, Sanofi-Aventis, Santhera, Teva, Vianex and royalties from Neurostatus Systems AG. Es wurden außerdem Honorare für Fortbildungsveranstaltungen von Allergan, Almirall, Bayer, Biogen, Excemed, Genzyme, Merck, Novartis, Pfizer, Sanofi-Aventis, Teva and UCB angenommen. Die Institution hat zusätzlich in den letzten 24 Monaten Subventionen für Patientendienste von Bayer, Merck und Teva erhalten. T. Derfuss fungierte in den letzten 24 Monaten als Principal Investigator der folgenden Medikamentenstudien ACROSS (Fingolimod, Novartis), GeNeuro, EXPAND (Siponimod, Novartis), MOMENTUM (Amiselimod, Mitsubishi) und OPERA (Ocrelizumab, Roche). L. Kappos fungierte in den letzten 24 Monaten als Principal Investigator der folgenden Medikamentenstudien BOLD EXT., EXPAND (BAF312, Novartis), DECIDE, DECIDE EXT. (Daclizumab HYP, Biogen), ENDORSE (BG00012, Biogen), FINGORETT, FTY-UMBRELLA, INFORMS, INFORMS EXT LONGTERM. (Fingolimod, Novartis), MOMENTUM (Amiselimod, Mitsubishi) OCRELIZUMAB PHASE II EXT., OPERA, ORATORIO (Ocrelizumab, Roche), REFLEXION (IFN β‑1a, Merck), STRATA EXT. (Natalizumab, Biogen Idec) and TERIFLUNOMIDE EXT. (Teriflunomide, Sanofi-Aventis). M. Diebold erklärt keine potenziellen persönlichen Interessenkonflikte. Die Forschung des MS-Zentrums in Basel wurde durch Bayer, Biogen, Novartis, die Schweizerische MS Gesellschaft, den Schweizerischen Nationalfonds für die Förderung der Wissenschaft, die Europäische Union und die Roche Research Foundation unterstützt.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diebold, M., Kappos, L. & Derfuss, T. Zelldepletion und Myeloablation bei neuroimmunologischen Erkrankungen. Nervenarzt 87, 814–820 (2016). https://doi.org/10.1007/s00115-016-0156-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-016-0156-3

Schlüsselwörter

Keywords

Navigation