Skip to main content
Log in

Experimentelle und therapeutische Neuromodulation von Emotion und sozialer Kognition mit nichtinvasiver Hirnstimulation

Experimental and therapeutic neuromodulation of emotion and social cognition with non-invasive brain stimulation

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Transkranielle Magnetstimulation (TMS) ist nicht nur eine höchst elegante Methode, um in der neurowissenschaftlichen Grundlagenforschung mittels transienter Läsionen kausale Struktur-Funktions-Zusammenhänge zu untersuchen, sondern auch aus klinischer Sicht ein vielversprechendes Verfahren für die Augmentationstherapie bei mittel- bis schwergradigen depressiven Episoden. Dieser Übersichtsartikel skizziert die methodischen Grundlagen der TMS und beleuchtet das neuromodulatorische Potenzial des Verfahrens anhand jüngster Studienergebnisse, die in den Domänen Emotionsregulation und soziale Kognition erzielt wurden. Vor diesem empirischen Hintergrund wird deutlich, dass präklinische Studien an gesunden Probandenkollektiven von eminenter Bedeutung sind, um innovative Stimulationsprotokolle zu entwickeln und funktionell relevante Zielorte zu definieren, die in klinischen Studien auf ihr therapeutisches Potenzial geprüft werden können. Des Weiteren werden die Perspektiven und Grenzen einer individualisierten TMS-Neuronavigation auf der Basis von aufgabenunabhängigen Konnektivitäts- und aufgabenspezifischen Aktivitätsmessungen aufgezeigt.

Summary

Transcranial magnetic stimulation (TMS) is not only a highly elegant method for basic neuroscientific research that employs transient lesions to explore the relationship between brain structure and function but in a clinical context it is also a very promising approach to augmentation therapy in middle to severe grade depressive episodes. This overview illustrates the methodological basis of TMS and illuminates its neuromodulatory potential with reference to findings from recent studies on emotion regulation and social cognition. Against this empirical background, it becomes clear that preclinical studies on healthy participants are extremely important to develop innovative stimulation protocols and define functionally relevant target regions to be tested in clinical studies for therapeutic efficacy. Finally, the perspectives and limitations of functionally guided, individualized TMS neuronavigation will be explored based on task-independent connectivity and task-dependent activity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Ahdab R, Ayache SS, Brugières P et al (2010) Comparison of „standard“ and „navigated“ procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression. Neurophysiol Clin Neurophysiol 40:27–36

    Article  CAS  Google Scholar 

  2. Baeken C, Leyman L, De Raedt R et al (2008) Left and right High Frequency repetitive Transcranial Magnetic Stimulation of the dorsolateral prefrontal cortex does not affect mood in female volunteers. Clin Neurophysiol 119:568–575

    Article  CAS  PubMed  Google Scholar 

  3. Baeken C, De Raedt R, Van Schuerbeek P et al (2010) Right prefrontal HF-rTMS attenuates right amygdala processing of negatively valenced emotional stimuli in healthy females. Behav Brain Res 214:450–455

    Article  CAS  PubMed  Google Scholar 

  4. Chambers CD, Payne JM, Stokes MG, Mattingley JB (2004) Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 7:217–218

    Article  CAS  PubMed  Google Scholar 

  5. Eisenegger C, Treyer V, Fehr E, Knoch D (2008) Time-course of „off-line“ prefrontal rTMS effects – a PET study. NeuroImage 42:379–384

    Article  CAS  PubMed  Google Scholar 

  6. Fitzgerald PB, Hoy K, McQueen S et al (2009) A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology 34:1255–1262

    Article  PubMed  Google Scholar 

  7. Fox MD, Buckner RL, Liu H et al (2014) Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci 111:E4367–E4375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fox MD, Buckner RL, White MP et al (2012) Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry 72:595–603

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fox MD, Liu H, Pascual-Leone A (2013) Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage 66:151–160

    Article  PubMed  Google Scholar 

  10. George MS, Wassermann EM, Williams WA et al (1996) Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation (rTMS) of the prefrontal cortex. J Neuropsychiatry Clin Neurosci 8(2):172–180

    Article  CAS  PubMed  Google Scholar 

  11. Herwig U, Padberg F, Unger J et al (2001) Transcranial magnetic stimulation in therapy studies: examination of the reliability of „standard“ coil positioning by neuronavigation. Biol Psychiatry 50:58–61

    Article  CAS  PubMed  Google Scholar 

  12. Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99

    Article  PubMed  Google Scholar 

  13. Hoogendam JM, Ramakers GMJ, Di Lazzaro V (2010) Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3:95–118

    Article  PubMed  Google Scholar 

  14. Huang Y-Z, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  15. Hurlemann R, Arndt S, Schlaepfer TE et al (2015) Diminished appetitive startle modulation following targeted inhibition of prefrontal cortex. Sci Rep 5:8954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jeurissen D, Sack AT, Roebroeck A et al (2014) TMS affects moral judgment, showing the role of DLPFC and TPJ in cognitive and emotional processing. Front Neurosci 8:18

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kelly YT, Webb TW, Meier JD et al (2014) Attributing awareness to oneself and to others. Proc Natl Acad Sci U S A 111:5012–5017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Knoch D, Gianotti LRR, Pascual-Leone A et al (2006) Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci 26:6469–6472

    Article  CAS  PubMed  Google Scholar 

  19. Knoch D, Pascual-Leone A, Meyer K et al (2006) Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science 314:829–832

    Article  CAS  PubMed  Google Scholar 

  20. Knoch D, Schneider F, Schunk D et al (2009) Disrupting the prefrontal cortex diminishes the human ability to build a good reputation. Proc Natl Acad Sci 106:20895–20899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ko JH, Monchi O, Ptito A et al (2008) Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task – a TMS-[ 11 C]raclopride PET study. Eur J Neurosci 28:2147–2155

    Article  PubMed Central  PubMed  Google Scholar 

  22. Di Lazzaro V, Dileone M, Pilato F et al (2011) Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol 105:2150–2156

    Article  Google Scholar 

  23. Lefaucheur J-P, André-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206

    Article  PubMed  Google Scholar 

  24. Liston C, Chen AC, Zebley BD et al (2014) Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry 76:517–526

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mosimann UP, Rihs TA, Engeler J et al (2000) Mood effects of repetitive transcranial magnetic stimulation of left prefrontal cortex in healthy volunteers. Psychiatry Res 94:251–256

    Article  CAS  PubMed  Google Scholar 

  26. Van Overwalle F (2009) Social cognition and the brain: a meta-analysis. Hum Brain Mapp 30:829–858

    Article  Google Scholar 

  27. Pascual-Leone A, Bartres-Fazf D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain–behaviour relationship by induction of „virtual lesions“. Philos Trans R Soc B Biol Sci 354:1229–1238

    Article  CAS  Google Scholar 

  28. Pascual-Leone A, Catala MD, Pascual AP-L (1996) Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology 46:499–502

    Article  CAS  PubMed  Google Scholar 

  29. Peterchev AV, Wagner TA, Miranda PC et al (2012) Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul 5:435–453

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rounis E, Lee L, Siebner HR et al (2005) Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. NeuroImage 26:164–176

    Article  PubMed  Google Scholar 

  31. Sack AT, Kadosh RC, Schuhmann T et al (2009) Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci 21:207–221

    Article  PubMed  Google Scholar 

  32. Strafella AP (2003) Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126:2609–2615

    Article  PubMed  Google Scholar 

  33. Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:1–4

    Google Scholar 

  34. Strang S, Gross J, Schuhmann T et al (2015) Be nice if you have to – the neurobiological roots of strategic fairness. Soc Cogn Affect Neurosci 10:790–796

    Article  PubMed  Google Scholar 

  35. Wang JX, Rogers LM, Gross EZ et al (2014) Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345:1054–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wang JX, Voss JL (2015) Long-lasting enhancements of memory and hippocampal-cortical functional connectivity following multiple-day targeted noninvasive stimulation. Hippocampus 25(8):877–883

    Article  PubMed  Google Scholar 

  37. Young L, Camprodon JA, Hauser M et al (2010) Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proc Natl Acad Sci U S A 107:6753–6758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zwanzger P, Steinberg C, Rehbein MA et al (2014) Inhibitory repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex modulates early affective processing. NeuroImage 101:193–203

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Mielacher, D. Scheele und R. Hurlemann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hurlemann M.Sc..

Additional information

R. Hurlemann ist Leiter der Arbeitsgruppe NEMO (Neuromodulation of Emotion), Universitätsklinikum Bonn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mielacher, C., Scheele, D. & Hurlemann, R. Experimentelle und therapeutische Neuromodulation von Emotion und sozialer Kognition mit nichtinvasiver Hirnstimulation. Nervenarzt 86, 1500–1507 (2015). https://doi.org/10.1007/s00115-015-4324-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-015-4324-7

Schlüsselwörter

Keywords

Navigation