Skip to main content
Log in

Therapeutischer Einsatz von Closed-loop-Hirnstimulation

Erfolge und Erwartungen

Therapeutic applications of closed-loop brain stimulation

Success and expectations

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Der therapeutische Einsatz von Hirnstimulation blieb bisher, bedingt durch eine hohe Variabilität der Wirksamkeit, auf wenige Indikationen und kleine Patientengruppen limitiert. Eine Individualisierung der Stimulationsparameter innerhalb eines Closed-loop-Systems, welches die Stimulation mit einer Auflösung von wenigen Millisekunden mit der Hirnaktivität synchronisiert, hat das Potenzial, die therapeutische Effektivität gegenüber traditionellen Open-loop-Ansätzen relevant zu erhöhen. In diesem Beitrag werden theoretische und experimentelle Ergebnisse vorgestellt, die für einen Closed-loop-Ansatz sprechen, und es werden grundlegende Aspekte bei der Entwicklung einer Closed-loop-Methode diskutiert sowie klinische Arbeiten, welche eine Effektivitätssteigerung quantifizieren konnten, kurz zusammengefasst. Eine deutliche Ausweitung der Indikationen einer therapeutischen Hirnstimulation in der klinischen Praxis ist mit der zukünftigen weiteren Entwicklung von Closed-loop-Methoden zu erwarten.

Summary

The therapeutic application of brain stimulation is still limited to relatively few indications and small groups of patients due to variable efficacy. Individualization of stimulation parameters by employing a closed-loop system, i.e. synchronization of stimulation with endogenous brain activity with millisecond precision, has the potential to significantly improve the therapeutic efficacy when compared to open-loop systems. In this article the theoretical and experimental results are reviewed including first clinical trials that support the superiority of closed-loop brain stimulation, fundamental aspects in the development of closed loop methods are discussed and clinical studies which could quantify an increase in effectiveness are summarized. A significant increase in the indications for therapeutic applications of closed-loop systems is to be expected in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex [letter]. Lancet 1:1106–1107

    Article  CAS  PubMed  Google Scholar 

  2. Deuschl G, Schade-Brittinger C, Krack P et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908

    Article  CAS  PubMed  Google Scholar 

  3. George MS, Lisanby SH, Avery D et al (2010) Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry 67:507–516

    Article  PubMed  Google Scholar 

  4. Ros T, Baars B, Lanius R et al (2014) Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front Hum Neurosci 8:1008

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gharabaghi A, Kraus D, Leao MT et al (2014) Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front Hum Neurosci 8:122

    PubMed Central  PubMed  Google Scholar 

  6. Hamada M, Terao Y, Hanajima R et al (2008) Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol 586:3927–3947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hariz M (2012) Twenty-five years of deep brain stimulation: celebrations and apprehensions. Mov Disord 27:930–933

    Article  PubMed  Google Scholar 

  8. Huang Y-Z, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  9. Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15:1053–1063

    Article  CAS  PubMed  Google Scholar 

  10. Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364:723–725

    Article  CAS  PubMed  Google Scholar 

  11. Lefaucheur JP, Andre-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206

    Article  PubMed  Google Scholar 

  12. Little S, Pogosyan A, Neal S et al (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74:449–457

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mutanen T, Nieminen JO, Ilmoniemi RJ (2013) TMS-evoked changes in brain-state dynamics quantified by using EEG data. Front Hum Neurosci 7:155

    Article  PubMed Central  PubMed  Google Scholar 

  14. O’reardon JP, Solvason HB, Janicak PG et al (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62:1208–1216

    Article  Google Scholar 

  15. Pradhan N, Sadasivan PK, Chatterji S et al (1995) Patterns of attractor dimensions of sleep EEG. Comput Biol Med 25:455–462

    Article  CAS  PubMed  Google Scholar 

  16. Schuepbach WM, Rau J, Knudsen K et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368:610–622

    Article  CAS  PubMed  Google Scholar 

  17. Stefan K, Kunesch E, Cohen LG et al (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  18. Wolters A, Sandbrink F, Schlottmann A et al (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345

    Article  PubMed  Google Scholar 

  19. Ziemann U, Paulus W, Nitsche MA et al (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182

    Article  PubMed  Google Scholar 

  20. Zrenner C, Eytan D, Wallach A et al (2010) A generic framework for real-time multi-channel neuronal signal analysis, telemetry control, and sub-millisecond latency feedback generation. Front Neurosci 4:173

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zrenner C, Müller-Dahlhaus F, Ziemann U (2015) Closed-loop neuroscience and non-invasive brain stimulation: a tale of two loops. Front Cell Neurosci:(under review)

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Zrenner gibt an, dass kein Interessenkonflikt besteht. U. Ziemann hat Honoraria für Beraterleistungen von Bayer Vital GmbH, Biogen Idec, CorTec GmbH, Medtronic GmbH und Servier erhalten.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ziemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zrenner, C., Ziemann, U. Therapeutischer Einsatz von Closed-loop-Hirnstimulation. Nervenarzt 86, 1523–1527 (2015). https://doi.org/10.1007/s00115-015-4318-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-015-4318-5

Schlüsselwörter

Keywords

Navigation