Der Nervenarzt

, Volume 85, Issue 6, pp 690–700 | Cite as

Funktionelle MRT des Gehirns im Ruhezustand

Leitthema

Zusammenfassung

Der Artikel gibt eine Einführung in Untersuchungen des Gehirns mithilfe funktioneller Magnetresonanztomographie, die während des Ruhezustandes („resting state“) durchgeführt werden können (rsfMRT). Diese Untersuchungen beruhen darauf, dass im „ruhenden“ Gehirn immer ein bestimmtes Maß an Hintergrundaktivität herrscht. Diese spontanen rsfMRT-Aktivitäten sind durch Fluktuationen des BOLD („blood oxygenation level-dependent“) -Signals (hauptsächlich in niederfrequenten Bereich < 0,1 Hz) gekennzeichnet, die mit der lokalen neuronalen Aktivität korrelieren und als Folge neuronaler Kopplungen mono- und polysynaptischer Verbindungen angesehen werden können. Zu den ersten ausführlich beschriebenen Netzwerken gehört das sog. „Ruhe“- oder Default-mode-Netzwerk (DMN). Es umfasst den medialen präfrontalen Kortex (MPC), den posterioren zingulären Kortex (PCC) und Präkuneus (PrC) sowie Teile des medialen Temporallappens und des lateralen und inferioren Parietallappens. Darüber hinaus ist eine Reihe weiterer Resting-state-Netzwerke (RSNs), wie z. B. ein motorisches, somatosensorisches, visuelles, auditorisches, kognitives System u. a. m., beschrieben worden, die z. T. über langstreckige Verbindungen vom Großhirnkortex zu Dienzephalon, Hirnstamm und Kleinhirn verfügen.

Schlüsselwörter

Ruhezustand Funktionelle Magnetresonanztomographie Default-mode-Netzwerk Saatbasierter Korrelationsanalyse Independent-component-Analyse 

Abkürzungen

aMPFC

anterior-mediale präfrontale Kortex

dMPFC

dorsomediales präfrontaler Kortex

BOLD

blood oxygen level-dependent

DMN

Default-mode-Netzwerk

dMPFC

dorsomediales präfrontales Subsystem

fMRT

funktionelle Magnetresonanztomographie

H+

Hippokampusformation

ICA

independent component analysis (unabhängige Komponentenanalyse)

IPL

inferiorer Parietalkortex

MAOA

Aktivität der Monoaminoxidase A

MPFC

medialer präfrontaler Kortex

MTL

mediotemporales Subsystem

PCC + PrC

retrosplenialer Kortex

PCC

posteriorer zingulärer Kortex

PHC

parahippokampaler Kortex

PrC

Präkuneus

rCBF

regionaler zerebraler Blutfluss

RSN

resting state network

SCA

seed based correlation analysis

TID

task induced deactivations

Resting state functional MRI of the brain

Summary

The article presents an introduction to studies of the brain using functional magnetic resonance imaging during rest (rsfMRI). These studies are based on the fact that the resting brain exhibits a certain level of constant background activity. These spontaneous rsfMRT activities are characterized by fluctuations of the blood oxygenation level-dependent (BOLD) signal (typically in the low frequency part of the power spectrum < 0.1 Hz), which correlate with the local neuronal activity and can be seen as a result of neuronal coupling of monosynaptic and polysynaptic connections. The first network, described in detail is the so-called default mode network (DMN). This includes the medial prefrontal cortex (MPC), the posterior cingulate cortex (PCC), the precuneus (PrC), parts of the medial temporal lobe and the lateral inferior parietal lobe. In addition, a number of other resting state networks (RSNs), such as a motor, somatosensory, visual, auditory and cognitive system has been described, which partly process long-term connections from the cerebral cortex to the diencephalon, brain stem and cerebellum.

Keywords

Resting state Functional magnetic resonance imaging Default mode network Seed based correlation analysis Independent component analysis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. W. Grodd und C. F. Beckmann geben an, dass kein Interessenkonflikt besteht. Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethikkommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Literatur

  1. 1.
    Andreasen NC, O’Leary DS, Cizadlo T et al (1995) Remembering the past: two facets of episodic memory explored with positron emission tomography. Am J Psychiatry 152:1576–1585PubMedGoogle Scholar
  2. 2.
    Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Binder JR, Frost JA, Hammeke TA et al (1999) Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci 11:80–95PubMedCrossRefGoogle Scholar
  5. 5.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  6. 6.
    Boveroux P, Vanhaudenhuyse A, Bruno MA et al (2010) Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–1053PubMedCrossRefGoogle Scholar
  7. 7.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  8. 8.
    Carhart-Harris RL, Murphy K, Leech R et al (2014) The effects of acutely administered 3,4-methylene-dioxymethamphetamine on spontaneous brain function in healthy volunteers measured with arterial spin labeling and blood oxygen level – dependent resting state functional connectivity. Biol Psychiatry. doi:10.1016/j.biopsych. 2013.12.015. [Epub ahead of print]Google Scholar
  9. 9.
    Chow HM, Horovitz SG, Carr WS et al (2013) Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A 110:10300–10305PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Clemens B, Voss B, Pawliczek C et al (2014) Effect of MAOA genotype on resting-state networks in healthy participants. Cereb Cortex. doi:10.1093/cercor/bht366Google Scholar
  11. 11.
    Cohen AL, Fair DA, Dosenbach NU et al (2008) Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41:45–57PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cole DM et al (2013) Dopamine-dependent architecture of cortico-subcortical network connectivity. Cereb Cortex 23:1509–1516PubMedCrossRefGoogle Scholar
  13. 13.
    Damoiseaux JS, Rombouts SARB, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    De Havas JA, Parimal S, Soon CS, Chee MWL (2012) Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuroimage 59(2):1745–1751CrossRefGoogle Scholar
  15. 15.
    Demertzi A, Soddu A, Faymonville ME et al (2011) Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. Prog Brain Res 193:309–322PubMedCrossRefGoogle Scholar
  16. 16.
    Doria V, Beckmann C, Arichi T et al (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci U S A 107:20015–20020PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Fair DA, Cohen AL, Dosenbach NUF et al (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci U S A 105:4028–4032PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19PubMedCentralPubMedGoogle Scholar
  20. 20.
    Fransson P, Skiöld B, Engström M et al (2009) Spontaneous brain activity in the newborn brain during natural sleep – an fMRI study in infants born at full term. Pediatr Res 66(3):301–305PubMedCrossRefGoogle Scholar
  21. 21.
    Greicius MD, Kiviniemi V, Tervonen O et al (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694PubMedCrossRefGoogle Scholar
  23. 23.
    Habas C, Kamdar N, Nguyen D et al (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hampson M, Olson IR, Leung HC et al (2004) Changes in functional connectivity of human MT/V5 with visual motion input. Neuroreport 15:1315–1319PubMedCrossRefGoogle Scholar
  25. 25.
    Kipping JA, Grodd W, Kumar V et al (2013) Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. NeuroImage 83:837–848PubMedCrossRefGoogle Scholar
  26. 26.
    Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19:2485–2497PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Omata K, Hanakawa T, Morimoto M, Honda M (2013) Spontaneous slow fluctuation of EEG alpha rhythm reflects activity in deep-brain structures: a simultaneous EEG-fMRI study. PLoS One 8:e66869PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    O’Reilly JX, Beckmann CF, Tomassini V et al (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965CrossRefGoogle Scholar
  30. 30.
    Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090 (discussion 1097–1099)PubMedCrossRefGoogle Scholar
  32. 32.
    Raichle ME (2011) The restless brain. Brain Connect 1:3–12PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Schacter DL, Addis DR, Buckner RL (2007) Remembering the past to imagine the future: the prospective brain. Nat Rev Neurosci 8:657–661PubMedCrossRefGoogle Scholar
  34. 34.
    Shao Y, Wang L, Ye E et al (2013) Decreased thalamocortical functional connectivity after 36 hours of total sleep deprivation: evidence from resting state fMRI. PLoS One 8:e78830PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Shmuel A, Leopold DA (2008) Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum Brain Mapp 29:751–761PubMedCrossRefGoogle Scholar
  36. 36.
    Shulman GL, Fiez JA, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. decreases in cerebral cortex. J Cogn Neurosci 9:648–663PubMedCrossRefGoogle Scholar
  37. 37.
    Smyser CD, Inder TE, Shimony JS et al (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 20:2852–2862PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Utevsky AV, Smith DV, Huettel SA (2014) Precuneus is a functional core of the default-mode network. J Neurosci 34:932–940PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang D, Snyder AZ, Shimony JS et al (2010) Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb Cortex 20:1187–1194PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Zou Q, Wu CW, Stein EA et al (2009) Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage 48:515–524PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Zou Q, Long X, Zuo X et al (2009) Functional connectivity between the thalamus and visual cortex under eyes closed and eyes open conditions: a resting-state fMRI study. Hum Brain Mapp 30:3066–3078PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Klinik für Psychiatrie, Psychotherapie und PsychosomatikUniversitätsklinikum AachenAachenDeutschland
  2. 2.Donders Institute, Centre for Cognitive NeuroimagingRadboud University NijmegenNijmegenNiederlande

Personalised recommendations