Der Nervenarzt

, Volume 85, Issue 6, pp 701–707 | Cite as

Funktionelle Bildgebung physiologischer und pathologischer Sprachproduktion

Leitthema

Zusammenfassung

Zahlreiche neurologische Patienten leiden unter Sprach- oder Sprechstörungen, deren zugrunde liegenden Pathomechanismen nur teilweise verstanden sind. Während die aphasiologische Forschung zum Sprachverständnis schon sehr weit gekommen ist, liegen deutlich weniger Daten zur Sprachproduktion und zum Sprechen selbst vor. Neue Bildgebungsmethoden erlauben mittlerweile jedoch auch die Untersuchung dieser Vorgänge, die zuvor aus Sorge um Bewegungsartefakte meist abgelehnt wurden. Dieser Artikel gibt einen Überblick über die Bildgebung der physiologischen Sprachproduktion und fasst eine Auswahl an Erkenntnissen zur Pathogenese der Sprechsymptome bei der Parkinson-Erkrankung und dem Entwicklungsstottern zusammen.

Schlüsselwörter

Sprachproduktion Sprechen Funktionelle Magnetresonanztomographie Parkinson Dysarthrophonie Entwicklungsstottern 

Functional imaging of physiological and pathological speech production

Summary

Numerous neurological patients suffer from speech and language disorders but the underlying pathomechanisms are not well understood. Imaging studies on speech production disorders lag behind aphasiological research on speech perception, probably due to worries concerning movement artifacts. Meanwhile, modern neuroimaging techniques allow investigation of these processes. This article summarizes the insights from neuroimaging on physiological speech production and also on the pathomechanisms underlying Parkinson’s disease and developmental stuttering.

Keywords

Speech production Language Functional magnetic resonance imaging Parkinson’s dysarthrophonia Developmental stuttering 

Literatur

  1. 1.
    Arnold C, Gehrig J, Gispert S et al (2013) Pathomechanisms and compensatory efforts related to Parkinsonian speech. Neuroimage Clin 4:82–97PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Broca P (1861) Nouvelle observation d’aphémie produite par une lésion de la troisième circonvolution frontale. Bull Soc Anatom (Paris) 2:398–407Google Scholar
  3. 3.
    Chang SE, Zhu DC (2013) Neural network connectivity differences in children who stutter. Brain 136:3709–3726PubMedCrossRefGoogle Scholar
  4. 4.
    Dosenbach NU, Visscher KM, Palmer ED et al (2006) A core system for the implementation of task sets. Neuron 50:799–812PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ethofer T, Kreifelts B, Wiethoff S et al (2009) Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. J Cogn Neurosci 21:1255–1268PubMedCrossRefGoogle Scholar
  6. 6.
    Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6:78–84PubMedCrossRefGoogle Scholar
  7. 7.
    Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123(Pt 7):1293–1326PubMedCrossRefGoogle Scholar
  8. 8.
    Goldstein K (1934) Der Aufbau des Organismus. Nijhoff, Den HaagGoogle Scholar
  9. 9.
    Herman AB, Houde JF, Vinogradov S et al (2013) Parsing the phonological loop: activation timing in the dorsal speech stream determines accuracy in speech reproduction. J Neurosci 33:5439–5453PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Hickok G, Buchsbaum B, Humphries C et al (2003) Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci 15:673–682PubMedCrossRefGoogle Scholar
  11. 11.
    Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402PubMedCrossRefGoogle Scholar
  12. 12.
    Ho AK, Bradshaw JL, Iansek R (2000) Volume perception in parkinsonian speech. Mov Disord 15:1125–1131PubMedCrossRefGoogle Scholar
  13. 13.
    Kell CA, Morillon B, Kouneiher F et al (2011) Lateralization of speech production starts in sensory cortices – a possible sensory origin of cerebral left dominance for speech. Cereb Cortex 21:932–937PubMedCrossRefGoogle Scholar
  14. 14.
    Kell CA, Neumann K, Von Kriegstein K et al (2009) How the brain repairs stuttering. Brain 132:2747–2760PubMedCrossRefGoogle Scholar
  15. 15.
    Levelt WJ, Roelofs A, Meyer AS (1999) A theory of lexical access in speech production. Behav Brain Sci 22:1–38PubMedGoogle Scholar
  16. 16.
    Liotti M, Ramig LO, Vogel D et al (2003) Hypophonia in Parkinson’s disease neural correlates of voice treatment revealed by PET. Neurology 60:432–440PubMedCrossRefGoogle Scholar
  17. 17.
    Murakami T, Kell CA, Restle J et al (2014) Left dorsal speech stream components and their contribution to phonological processing. (in Revision)Google Scholar
  18. 18.
    Ojemann G, Ojemann J, Lettich E et al (1989) Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J Neurosurg 71:316–326PubMedCrossRefGoogle Scholar
  19. 19.
    Parker Jones O, Seghier ML, Kawabata Duncan KJ et al (2013) Auditory-motor interactions for the production of native and non-native speech. J Neurosci 33:2376–2387CrossRefGoogle Scholar
  20. 20.
    Penfield W, Roberts L (1959) Speech and brain mechanisms. Princeton University Press, PrincetonGoogle Scholar
  21. 21.
    Pichon S, Kell CA (2013) Affective and sensorimotor components of emotional prosody generation. J Neurosci 33:1640–1650PubMedCrossRefGoogle Scholar
  22. 22.
    Preibisch C, Raab P, Neumann K et al (2003) Event-related fMRI for the suppression of speech-associated artifacts in stuttering. Neuroimage 19:1076–1084PubMedCrossRefGoogle Scholar
  23. 23.
    Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Riecker A, Mathiak K, Wildgruber D et al (2005) fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 64:700–706PubMedCrossRefGoogle Scholar
  25. 25.
    Rijntjes M, Weiller C, Bormann T et al (2012) The dual loop model: its relation to language and other modalities. Front Evol Neurosci 4:9. DOI 10.3389/fnevo.2012.00009PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Simonyan K, Herscovitch P, Horwitz B (2013) Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. Neuroimage 70:21–32PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Vigneau M, Beaucousin V, Herve PY et al (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30:1414–1432PubMedCrossRefGoogle Scholar
  28. 28.
    Vigneau M, Beaucousin V, Herve PY et al (2011) What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. Neuroimage 54:577–593PubMedCrossRefGoogle Scholar
  29. 29.
    Wernicke C (1874) Der aphasische Symptomenkomplex. Cohn & Weigert, BreslauGoogle Scholar
  30. 30.
    Wiethoff S, Wildgruber D, Kreifelts B et al (2008) Cerebral processing of emotional prosody – influence of acoustic parameters and arousal. Neuroimage 39:885–893PubMedCrossRefGoogle Scholar
  31. 31.
    Wildgruber D, Ackermann H, Grodd W (2001) Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage 13:101–109PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Klinik für Neurologie und Brain Imaging CenterGoethe Universität FrankfurtFrankfurtDeutschland

Personalised recommendations