Skip to main content

Neurobiologische Grundlagen der Verhaltenssüchte

Neurobiology of behavioral addictions

F. Kiefer und M. Fauth-Bühler haben zu gleichen Teilen zu der Arbeit beigetragen.

Zusammenfassung

Für die Entstehung und Aufrechterhaltung von Suchtverhalten kommt dem belohnungsassoziierten Lernen eine zentrale Rolle zu. Die hierbei zugrunde liegenden neurobiologischen Grundlagen und die assoziierten neuropsychologischen Mechanismen werden vorgestellt und Parallelen von Substanzabhängigkeit und Verhaltenssüchten aufgezeigt. Im zweiten Abschnitt des Beitrages werden spezifische Befunde zu Veränderungen neurobiologischer Prozesse bei pathologischem Glücksspielen und Computer- und Internetsucht mittels funktioneller Bildgebung herausgearbeitet. Der Schwerpunkt liegt dabei auf Veränderungen in neurokognitiven Prozessen wie Reiz-Reaktivität, Verarbeitung von Belohnung und Bestrafung sowie Verhaltenskontrolle.

Summary

Reward learning represents a crucial mechanism in the acquisition and maintenance of addictive behavior. The underlying neurobiological foundations and associated neurobiological pathways are identified in this review and similarities between substance abuse and behavioral addictions will be discussed. In the second section current neuroimaging findings on neurobiological mechanisms of pathological gambling and computer and internet addiction are discussed. The main focuses are on changes in neurocognitive processes, such as cue reactivity, reward and punishment processing and behavioral control.

This is a preview of subscription content, access via your institution.

Literatur

  1. Bühler M, Mann K (2010) Neuroimaging und Alkohol. In: Singer MV, Batra A, Mann K (Hrsg) Alkohol und Tabak – Grundlagen und Folgeerkrankungen. Thieme, Stuttgart, S 165–177

  2. Balodis IM, Kober H, Worhunsky PD et al (2012) Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 71:749–757

    PubMed  Article  Google Scholar 

  3. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    PubMed  Article  CAS  Google Scholar 

  4. Buhler M, Mann K (2011) Alcohol and the human brain: a systematic review of different neuroimaging methods. Alcohol Clin Exp Res 35(10):1771–1793. doi:10.1111/j.1530-0277.2011.01540.x.:10-0277

    PubMed  Article  Google Scholar 

  5. Crockford DN, Goodyear B, Edwards J et al (2005) Cue-induced brain activity in pathological gamblers. Biol Psychiatry 58:787–795

    PubMed  Article  Google Scholar 

  6. Dalley JW, Laane K, Theobald DE et al (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci U S A 102:6189–6194

    PubMed  Article  CAS  Google Scholar 

  7. Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020–1028

    PubMed  Article  CAS  Google Scholar 

  8. Greck M de, Enzi B, Prosch U et al (2010) Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli. Hum Brain Mapp 31:1802–1812

    PubMed  Google Scholar 

  9. Ruiter MB de, Veltman DJ, Goudriaan AE et al (2009) Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 34:1027–1038

    PubMed  Article  Google Scholar 

  10. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  Google Scholar 

  11. Di Ciano P, Everitt BJ (2001) Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 25:341–360

    Article  Google Scholar 

  12. Dong G, Huang J, Du X (2011) Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. J Psychiatr Res 45:1525–1529

    PubMed  Article  Google Scholar 

  13. Dong G, Zhou H, Zhao X (2011) Male Internet addicts show impaired executive control ability: evidence from a color-word Stroop task. Neurosci Lett 499:114–118

    PubMed  Article  CAS  Google Scholar 

  14. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    PubMed  Article  CAS  Google Scholar 

  15. Goudriaan AE, Ruiter MB de, Brink W van den et al (2010) Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol 15:491–503

    PubMed  Article  Google Scholar 

  16. Han DH, Kim YS, Lee YS et al (2010) Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychol Behav Soc Netw 13:655–661

    PubMed  Article  Google Scholar 

  17. Heinz A, Beck A, Grusser SM et al (2009) Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict Biol 14:108–118

    PubMed  Article  CAS  Google Scholar 

  18. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    PubMed  Article  CAS  Google Scholar 

  19. Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    PubMed  Article  CAS  Google Scholar 

  20. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatr 162:1403–1413

    PubMed  Article  Google Scholar 

  21. Ko CH, Liu GC, Hsiao S et al (2009) Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res 43:739–747

    PubMed  Article  Google Scholar 

  22. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    PubMed  Article  CAS  Google Scholar 

  23. Lorenz RC, Kruger JK, Neumann B et al (2013) Cue reactivity and its inhibition in pathological computer game players. Addict Biol 18:134–146

    PubMed  Article  Google Scholar 

  24. McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537

    PubMed  CAS  Google Scholar 

  25. Miedl SF, Fehr T, Meyer G, Herrmann M (2010) Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res 181:165–173

    PubMed  Article  Google Scholar 

  26. Miedl SF, Peters J, Buchel C (2012) Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry 69:177–186

    PubMed  Article  Google Scholar 

  27. Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioural control. Nature 431:760–767

    PubMed  Article  CAS  Google Scholar 

  28. Park WK, Bari AA, Jey AR et al (2002) Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 22:2916–2925

    PubMed  CAS  Google Scholar 

  29. Potenza MN, Leung HC, Blumberg HP et al (2003) An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. Am J Psychiatr 160:1990–1994

    PubMed  Article  Google Scholar 

  30. Potenza MN, Steinberg MA, Skudlarski P et al (2003) Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry 60:828–836

    PubMed  Article  Google Scholar 

  31. Reuter J, Raedler T, Rose M et al (2005) Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 8:147–148

    PubMed  Article  CAS  Google Scholar 

  32. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    PubMed  Article  CAS  Google Scholar 

  33. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science (New York, NY) 275:1593–1599

  34. Smolka MN, Buhler M, Klein S et al (2006) Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology (Berl) 184:577–588

    Google Scholar 

  35. Tanabe J, Thompson L, Claus E et al (2007) Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum Brain Mapp 28:1276–1286

    PubMed  Article  Google Scholar 

  36. Holst RJ van, Holstein M van, Brink W van den et al (2012) Response inhibition during cue reactivity in problem gamblers: an fMRI study. PloS One 7:e30909

    PubMed  Article  Google Scholar 

  37. Holst RJ van, Veltman DJ, Buchel C et al (2012) Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry 71:741–748

    PubMed  Article  Google Scholar 

  38. Vollstadt-Klein S, Loeber S, Kiefer F (2010) Effects of extinction training on mesolimbic cue-reactivity in alcohol dependence. Eur Arch Psychiatry Clin Neurosci 260:S51

    Article  Google Scholar 

  39. Vollstadt-Klein S, Loeber S, Kirsch M et al (2011) Effects of cue-exposure treatment on neural cue reactivity in alcohol dependence: a randomized trial. Biol Psychiatry 69(11):1060–1066

    PubMed  Article  Google Scholar 

  40. Wise RA (2004) Dopamine, learning and motivation. Nature Rev Neurosci 5:483–494

    Article  CAS  Google Scholar 

  41. Wrase J, Makris N, Braus DF et al (2008) Amygdala volume associated with alcohol abuse relapse and craving. Am J Psychiatry 165:1179–1184

    PubMed  Article  Google Scholar 

  42. Wrase J, Schlagenhauf F, Kienast T et al (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 35:787–794

    PubMed  Article  Google Scholar 

  43. Wolfling K, Buhler M, Lemenager T et al. (2009) [Gambling and internet addiction: review und research agenda]. Nervenarzt 80:1030–1039

    PubMed  Article  CAS  Google Scholar 

  44. van Holst RJ, van den Brink W, Velnnan DJ, Goudriaan AE (2010) Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci Biobehav Rev 34:87–107

    Article  Google Scholar 

  45. Potenza MN (2008) The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philosophical transactions of the Royal Society of London Series B. Biol Sci 363:3181–3189

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kiefer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kiefer, F., Fauth-Bühler, M., Heinz, A. et al. Neurobiologische Grundlagen der Verhaltenssüchte. Nervenarzt 84, 557–562 (2013). https://doi.org/10.1007/s00115-012-3719-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-012-3719-y

Schlüsselwörter

  • Verhaltenssüchte
  • Neurobiologie
  • Lernen
  • Belohnungssystem
  • Bildgebungsbefunde

Keywords

  • Behavioral addictions
  • Neurobiology
  • Learning
  • Reward system
  • Neuroimaging