Skip to main content
Log in

Funktionelle Bildgebung der tiefen Hirnstimulation bei idiopathischem Parkinson-Syndrom

Functional imaging of deep brain stimulation in idiopathic Parkinson’s disease

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Mit funktionell-bildgebenden Untersuchungen können die Auswirkungen der tiefen Hirnstimulation (THS) auf das neuronale Netzwerk am lebenden Menschen untersucht werden. Bei Patienten mit idiopathischem Parkinson-Syndrom (IPS) und THS wurden Studien vorwiegend mit Positronenemissionstomographie (PET) in Ruhe sowie unter motorischen, kognitiven oder emotionalen Aktivierungsbedingungen durchgeführt. Im motorischen System führt die Stimulation zu einer Reduktion abnormaler neuronaler Aktivitätsmuster, welche teilweise mit der Besserung motorischer Kardinalsymptome korreliert. Ein gesteigerter Energieumsatz im Zielgebiet der Elektroden weist auf einen exzitatorischen Effekt der THS in der unmittelbaren Umgebung des elektrischen Feldes hin. Fernwirkungen der Nucleus-subthalamicus (STN)-Stimulation auf frontale kortikale Assoziationsareale bieten Erklärungen für Veränderungen von Affekt, Verhalten und Kognition bei einzelnen Patienten, die vermutlich durch eine Interferenz der THS mit assoziativen und limbischen Basalganglienschleifen verursacht werden. Zusammenfassend erbringen die Ergebnisse von Bildgebungsstudien wichtige Erkenntnisse, die zur Optimierung und Weiterentwicklung der THS überaus wertvoll sind.

Summary

Functional brain imaging allows the effects of deep brain stimulation (DBS) on the living human brain to be investigated. In patients with advanced Parkinson’s disease (PD), positron emission tomography (PET) studies were undertaken at rest as well as under motor, cognitive or behavioral activation. DBS leads to a reduction of abnormal PD-related network activity in the motor system, which partly correlates with the improvement of motor symptoms. The local increase of energy consumption within the direct target area suggests a predominant excitatory influence of the stimulation current on neuronal tissue. Remote effects of DBS of the subthalamic nucleus (STN) on frontal association cortices indicate an interference of stimulation energy with associative and limbic basal ganglia loops. Taken together, functional brain imaging provides very valuable data for advancement of the DBS technique in PD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Asanuma K, Tang C, Ma Y et al (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678

    Article  PubMed  Google Scholar 

  2. Ballanger B, Lozano AM, Moro E et al (2009) Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson’s disease: a [(15)O] H2O PET study. Hum Brain Mapp 30:3901–3909

    Article  PubMed  Google Scholar 

  3. Bruet N, Windels F, Bertrand A et al (2001) High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol 60:15–24

    CAS  PubMed  Google Scholar 

  4. Ceballos-Baumann AO, Boecker H, Bartenstein P et al (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56:997–1003

    Article  CAS  PubMed  Google Scholar 

  5. Eidelberg D, Moeller JR, Dhawan V et al (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14:783–801

    CAS  PubMed  Google Scholar 

  6. Frank MJ, Samanta J, Moustafa AA et al (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318:1309–1312

    Article  CAS  PubMed  Google Scholar 

  7. Fukuda M, Barnes A, Simon ES et al (2004) Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. Neuroimage 21:608–615

    Article  PubMed  Google Scholar 

  8. Fukuda M, Mentis M, Ghilardi MF et al (2001) Functional correlates of pallidal stimulation for Parkinson’s disease. Ann Neurol 49:155–164

    Article  CAS  PubMed  Google Scholar 

  9. Fukuda M, Mentis MJ, Ma Y et al (2001) Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 124:1601–1609

    Article  CAS  PubMed  Google Scholar 

  10. Geday J, Ostergaard K, Johnsen E et al (2009) STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Hum Brain Mapp 30:112–121

    Article  PubMed  Google Scholar 

  11. Grafton ST, Turner RS, Desmurget M et al (2006) Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology 66:1192–1199

    Article  CAS  PubMed  Google Scholar 

  12. Haslinger B, Kalteis K, Boecker H et al (2005) Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson’s disease. Neuroimage 28:598–606

    Article  PubMed  Google Scholar 

  13. Hershey T, Revilla FJ, Wernle AR et al (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 61:816–821

    CAS  PubMed  Google Scholar 

  14. Hilker R, Portman AT, Voges J et al (2005) Disease progression continues in patients with advanced Parkinson’s disease and effective subthalamic nucleus stimulation. J Neurol Neurosurg Psychiatry 76:1217–1221

    Article  CAS  PubMed  Google Scholar 

  15. Hilker R, Voges J, Ghaemi M et al (2003) Deep brain stimulation of the subthalamic nucleus does not increase the striatal dopamine concentration in parkinsonian humans. Mov Disord 18:41–48

    Article  PubMed  Google Scholar 

  16. Hilker R, Voges J, Weber T et al (2008) STN-DBS activates the target area in Parkinson disease: an FDG-PET study. Neurology 71:708–713

    Article  CAS  PubMed  Google Scholar 

  17. Hilker R, Voges J, Weisenbach S et al (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: Evidence from a FDG-PET Study in Advanced Parkinson’s Disease. J Cereb Blood Flow Metab 24:7–16

    Article  CAS  PubMed  Google Scholar 

  18. Jahanshahi M, Ardouin CM, Brown RG et al (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 123(6):1142–1154

    Article  PubMed  Google Scholar 

  19. Kalbe E, Voges J, Weber T et al (2009) Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology 72:42–49

    Article  CAS  PubMed  Google Scholar 

  20. Le Jeune F, Drapier D, Bourguignon A et al (2009) Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology 73:1746–1751

    Article  Google Scholar 

  21. Limousin P, Greene J, Pollak P et al (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann Neurol 42:283–291

    Article  CAS  PubMed  Google Scholar 

  22. Mallet L, Schupbach M, N’diaye K et al (2007) Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104:10661–10666

    Article  CAS  PubMed  Google Scholar 

  23. Morrish PK, Sawle GV, Brooks DJ (1996) An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain 119(2):585–591

    Article  PubMed  Google Scholar 

  24. Pinto S, Thobois S, Costes N et al (2004) Subthalamic nucleus stimulation and dysarthria in Parkinson’s disease: a PET study. Brain 127:602–615

    Article  PubMed  Google Scholar 

  25. Schroeder U, Kuehler A, Haslinger B et al (2002) Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 125:1995–2004

    Article  CAS  PubMed  Google Scholar 

  26. Schroeder U, Kuehler A, Lange KW et al (2003) Subthalamic nucleus stimulation affects a frontotemporal network: a PET study. Ann Neurol 54:445–450

    Article  PubMed  Google Scholar 

  27. Strafella AP, Sadikot AF, Dagher A (2003) Subthalamic deep brain stimulation does not induce striatal dopamine release in Parkinson’s disease. Neuroreport 14:1287–1289

    Article  PubMed  Google Scholar 

  28. Trost M, Su S, Su P et al (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 31:301–307

    Article  PubMed  Google Scholar 

  29. Voon V, Kubu C, Krack P et al (2006) Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord 21(Suppl 14):305–327

    Article  Google Scholar 

  30. Wallace BA, Ashkan K, Heise CE et al (2007) Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 130:2129–2145

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Prof. Dr. R. Hilker ist als Referent für die Firma Medtronic GmbH tätig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hilker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilker, R. Funktionelle Bildgebung der tiefen Hirnstimulation bei idiopathischem Parkinson-Syndrom. Nervenarzt 81, 1204–1207 (2010). https://doi.org/10.1007/s00115-010-3027-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-010-3027-3

Schlüsselwörter

Keywords

Navigation