Skip to main content
Log in

Nuklearmedizinisches Imaging bei Parkinson-Syndromen

Ein Update

Nuclear medicine imaging in patients with Parkinson’s syndrome

An update

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die nuklearmedizinische Bildgebung mittels Positronenemissionstomographie (PET) oder Single-Photonen-Emissions-Computertomographie (SPECT) bietet neben der Messung von Metabolismus und Blutfluss die Möglichkeit der Darstellung einzelner Moleküle. Bei Patienten mit Morbus Parkinson haben es diese Techniken erstmals erlaubt, die Anzahl der dopaminergen Neurone zu quantifizieren, wodurch die Diagnose gesichert, die Progression der Erkrankung und auch das Anwachsen von Implantaten beurteilt werden kann. PET und SPECT haben einen wesentlichen Beitrag zu unserem heutigen Wissen über die Pathophysiologie dieser Erkrankung geleistet. In den letzten Jahren werden diese Verfahren auch eingesetzt, um die Pathophysiologie der nichtmotorischen Symptome dieser Erkrankung zu verstehen.

Summary

Nuclear medicine imaging using positron emission tomography (PET) or single photon emission computed tomography (SPECT) has enabled to study not only the metabolism and blood flow in specific brain areas but also the quantification of the function of distinct molecules. With respect to Parkinson’s disease PET and later SPECT allowed the number of dopaminergic neurons to be assessed in vivo. These quantifications are relevant to establishing a clinical diagnosis, assessing the progression of the disease or the survival of transplanted dopaminergic neurons. In addition both techniques have markedly contributed to our understanding of the pathophysiology of this disorder. More recently, molecular imaging has been directed towards understanding the pathophysiology of non-motor symptoms in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Leenders KL, Herold S, Brooks DJ et al (1984) Pre-synaptic and post-synaptic dopaminergic system in human brain. Lancet 2:110–111

    Article  PubMed  Google Scholar 

  2. Chouker M, Tatsch K, Linke R et al (2001) Striatal dopamine transporter binding in early to moderately advanced Parkinson’s disease: monitoring of disease progression over 2 years. Nucl Med Commun 22:721–725

    Article  PubMed  Google Scholar 

  3. Schwarz J, Linke R, Kerner M et al (2000) Striatal dopamine transporter binding assessed by [I-123] IPT and single photon emission computed tomography in patients with early Parkinson’s disease: implications for a preclinical diagnosis. Arch Neurol 57:205–208

    Article  PubMed  Google Scholar 

  4. Eisensehr I, Linke R, Noachtar S et al (2000) Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behaviour disorder. Comparison with Parkinson’s disease and controls. Brain 123(6):1155–1160

    Article  PubMed  Google Scholar 

  5. Berendse HW, Ponsen MM (2006) Detection of preclinical Parkinson’s disease along the olfactory trac(t). J Neural Transm Suppl 321–325

  6. Eggers C, Schmidt A, Hagenah J et al (2010) Progression of subtle motor signs in PINK1 mutation carriers with mild dopaminergic deficit. Neurology 74:1798–1805

    Article  PubMed  Google Scholar 

  7. Schnitzler A, Fuchs G, Baas H et al (2010) Early deep brain stimulation for Parkinson’s disease. Fortschr Neurol Psychiatr 78 (Suppl 1):37–40

    Article  Google Scholar 

  8. Hilker R, Klein C, Ghaemi M et al (2001) Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 49:367–376

    Article  PubMed  Google Scholar 

  9. Hilker R, Klein C, Hedrich K et al (2002) The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans. Neurosci Lett 323:50–54

    Article  PubMed  Google Scholar 

  10. Pavese N, Khan NL, Scherfler C et al (2009) Nigrostriatal dysfunction in homozygous and heterozygous parkin gene carriers: an 18F-dopa PET progression study. Mov Disord 24:2260–2266

    Article  PubMed  Google Scholar 

  11. Adams JR, Netten H van, Schulzer M et al (2005) PET in LRRK2 mutations: comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain 128:2777–2785

    Article  PubMed  Google Scholar 

  12. Khan NL, Scherfler C, Graham E et al (2005) Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation. Neurology 64:134–136

    PubMed  Google Scholar 

  13. Ahlskog JE, Uitti RJ, O’Connor MK et al (1999) The effect of dopamine agonist therapy on dopamine transporter imaging in Parkinson’s disease. Mov Disord 14:940–946

    Article  PubMed  Google Scholar 

  14. Brooks DJ (2000) Monitoring neuroprotection and restorative therapies in Parkinson’s disease with PET. J Neural Transm (Suppl 60):125–137

    Google Scholar 

  15. Marek K, Seibyl J, Shoulson I et al (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 287:1653–1661

    Article  Google Scholar 

  16. Oertel WH, Wolters E, Sampaio C et al (2006) Pergolide versus levodopa monotherapy in early Parkinson’s disease patients: the Pelmopet Study. Mov Disord 21:343–353

    Article  PubMed  Google Scholar 

  17. Whone AL, Watts RL, Stoessl AJ et al (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: the Real-Pet Study. Ann Neurol 54:93–101

    Article  PubMed  Google Scholar 

  18. Lindvall O, Brundin P, Widner H et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247:574–577

    Article  PubMed  Google Scholar 

  19. Lindvall O, Hagell P (2001) Cell therapy and transplantation in Parkinson’s disease. Clin Chem Lab Med 39:356–361

    Article  PubMed  Google Scholar 

  20. Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  PubMed  Google Scholar 

  21. Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  PubMed  Google Scholar 

  22. Gerhard A, Pavese N, Hotton G et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  PubMed  Google Scholar 

  23. Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson’s disease patients with and without dyskinesias. Neurology 49:717–723

    PubMed  Google Scholar 

  24. Laihinen AO, Rinne JO, Ruottinen HM et al (1994) PET studies on dopamine D1 receptors in the human brain with carbon-11-SCH 39166 and carbon-11-NNC 756. J Nucl Med 35:1916–1920

    PubMed  Google Scholar 

  25. Schwarz J, Tatsch K, Arnold G et al (1993) 123I-iodobenzamide-SPECT in 83 patients with de novo parkinsonism. Neurology 43:17–20

    Google Scholar 

  26. Schwarz J, Tatsch K, Gasser T et al (1997) 123 IBZM binding predicts dopaminergic responsiveness in patients with parkinsonism and previous dopaminomimetic therapy. Mov Disord 12:898–902

    Article  PubMed  Google Scholar 

  27. Schwarz J, Tatsch K, Gasser T et al (1998) 123I-IBZM binding compared with long-term clinical follow up in patients with de novo parkinsonism. Mov Disord 13:16–19

    Article  PubMed  Google Scholar 

  28. Antonini A, Schwarz J, Oertel WH et al (1997) Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11C] raclopride. Mov Disord 12:33–38

    Article  PubMed  Google Scholar 

  29. Piccini P, Brooks DJ, Bjorklund A et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140

    Article  PubMed  Google Scholar 

  30. La Fuente-Fernandez R de, Lim AS, Sossi V et al (2001) Apomorphine-induced changes in synaptic dopamine levels: positron emission tomography evidence for presynaptic inhibition. J Cereb Blood Flow Metab 21:1151–1159

    Google Scholar 

  31. La Fuente-Fernandez R de, Ruth TJ, Sossi V et al (2001) Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293:1164–1166

    Article  Google Scholar 

  32. Kovoor A, Seyffarth P, Ebert J et al (2005) D2 dopamine receptors colocalize regulator of G-protein signaling 9–2 (RGS9–2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. J Neurosci 25:2157–2165

    Article  PubMed  Google Scholar 

  33. Seeman P, Schwarz J, Chen JF et al (2006) Psychosis pathways converge via D2 high dopamine receptors. Synapse 60:319–346

    Article  PubMed  Google Scholar 

  34. Cenci MA, Lindgren HS (2007) Advances in understanding L-DOPA-induced dyskinesia. Curr Opin Neurobiol 17:665–671

    Article  PubMed  Google Scholar 

  35. Picconi B, Centonze D, Hakansson K et al (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 6:501–506

    PubMed  Google Scholar 

  36. Brooks DJ, Piccini P, Turjanski N, Samuel M (2000) Neuroimaging of dyskinesia. Ann Neurol 47:154–159

    Google Scholar 

  37. Piccini P, Weeks RA, Brooks DJ (1997) Alterations in opioid receptor binding in Parkinson’s disease patients with levodopa-induced dyskinesias. Ann Neurol 42:720–726

    Article  PubMed  Google Scholar 

  38. Baumann CA, Mu L, Wertli N et al (2010) Syntheses and pharmacological characterization of novel thiazole derivatives as potential mGluR5 PET ligands. Bioorg Med Chem (Epub ahead of print)

  39. Sanchez-Pernaute R, Wang JQ, Kuruppu D et al (2008) Enhanced binding of metabotropic glutamate receptor type 5 (mGluR5) PET tracers in the brain of parkinsonian primates. Neuroimage 42:248–251

    Article  PubMed  Google Scholar 

  40. Troiano AR, La Fuente-Fernandez R de, Sossi V et al (2009) PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology 72:1211–1216

    Article  PubMed  Google Scholar 

  41. La Fuente-Fernandez R de, Sossi V, Huang Z et al (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754

    Article  Google Scholar 

  42. Bruck A, Portin R, Lindell A et al (2001) Positron emission tomography shows that impaired frontal lobe functioning in Parkinson’s disease is related to dopaminergic hypofunction in the caudate nucleus. Neurosci Lett 311:81–84

    Article  PubMed  Google Scholar 

  43. Rinne JO, Portin R, Ruottinen H et al (2000) Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F] fluorodopa positron emission tomographic study. Arch Neurol 57:470–475

    Article  PubMed  Google Scholar 

  44. Sawamoto N, Piccini P, Hotton G et al (2008) Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain 131:1294–1302

    Article  PubMed  Google Scholar 

  45. Brooks DJ (2009) Imaging amyloid in Parkinson’s disease dementia and dementia with Lewy bodies with positron emission tomography. Mov Disord 24(Suppl 2):742–747

    Article  Google Scholar 

  46. Brooks DJ (2010) Imaging approaches to Parkinson disease. J Nucl Med 51:596–609

    Article  PubMed  Google Scholar 

  47. Burack MA, Hartlein J, Flores HP et al (2010) In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology 74:77–84

    Article  PubMed  Google Scholar 

  48. Maetzler W, Liepelt I, Reimold M et al (2009) Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis 34:107–112

    Article  PubMed  Google Scholar 

  49. Maetzler W, Reimold M, Liepelt I et al (2008) [11C]PIB binding in Parkinson’s disease dementia. Neuroimage 39:1027–1033

    Article  PubMed  Google Scholar 

  50. Fodero-Tavoletti MT, Smith DP, McLean CA et al (2007) In vitro characterization of Pittsburgh compound-B binding to Lewy bodies. J Neurosci 27:10365–10371

    Article  PubMed  Google Scholar 

  51. Iyo M, Namba H, Fukushi K et al (1997) Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease. Lancet 349:1805–1809

    Article  PubMed  Google Scholar 

  52. Hilker R, Thomas AV, Klein JC et al (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722

    Article  PubMed  Google Scholar 

  53. Klein JC, Eggers C, Kalbe E et al (2010) Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 74:885–892

    Article  PubMed  Google Scholar 

  54. Gorell JM, Rybicki BA, Johnson CC, Peterson EL (1999) Smoking and Parkinson’s disease: a dose-response relationship. Neurology 52:115–119

    PubMed  Google Scholar 

  55. Tanner C, Goldman S, Langston J et al (1998) Smoking and risk of Parkinson’s disease (PD) in twins discordant for Parkinson’s disease. Neurology 50:A373–A374

    Google Scholar 

  56. Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  PubMed  Google Scholar 

  57. Meyer PM, Strecker K, Kendziorra K et al (2009) Reduced alpha4beta2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch Gen Psychiatry 66:866–877

    Article  PubMed  Google Scholar 

  58. Kas A, Bottlaender M, Gallezot JD et al (2009) Decrease of nicotinic receptors in the nigrostriatal system in Parkinson’s disease. J Cereb Blood Flow Metab 29:1601–1608

    Article  PubMed  Google Scholar 

  59. Moresco RM, Matarrese M, Fazio F (2006) PET and SPET molecular imaging: focus on serotonin system. Curr Top Med Chem 6:2027–2034

    Article  PubMed  Google Scholar 

  60. Guttman M, Boileau I, Warsh J et al (2007) Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur J Neurol 14:523–528

    Article  PubMed  Google Scholar 

  61. Boileau I, Warsh JJ, Guttman M et al (2008) Elevated serotonin transporter binding in depressed patients with Parkinson’s disease: a preliminary PET study with [11C] DASB. Mov Disord 23:1776–1780

    Article  PubMed  Google Scholar 

  62. Strecker K, Wegner F, Hesse S et al (2010) Preserved serotonin transporter binding in de novo Parkinson’s disease – negative correlation with the dopamine transporter. J Neurol (in press)

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Honorare für Vorträge und Beratung von GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, J. Nuklearmedizinisches Imaging bei Parkinson-Syndromen. Nervenarzt 81, 1160–1167 (2010). https://doi.org/10.1007/s00115-010-3026-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-010-3026-4

Schlüsselwörter

Keywords

Navigation