Parenchym-Ultraschall bei Parkinson-Syndromen

Sonography of the parenchyma in Parkinson’s disease

Zusammenfassung

Die transkranielle Sonographie des Hirnparenchyms ist eine einfache und schnell durchführbare diagnostische Methode zum Nachweis eines Parkinson-Syndroms. Bis zu 90% der Patienten mit einem primären Parkinson-Syndrom zeigen eine vermehrte Hyperechogenität in Projektion auf die Substantia nigra (SN). In gesunden Kontrollen findet man lediglich in 10–15% der Fälle eine vermehrte Hyperechogenität der SN und auch in den Differenzialdiagnosen des primären Parkinson-Syndroms, also der Multisystematrophie vom Parkinson-Typ (MSA-P), der progressiven supranukleären Blickparese (PSP) und dem essenziellen Tremor ist die vermehrte Echogenitätsanhebung der SN deutlich seltener zu finden. Bei fast allen bekannten Formen der monogenetischen Parkinson-Syndrome ist die vermehrte Hyperechogenität der SN nachweisbar und dieses auch schon in prämotorischen Stadien der Krankheit. Bisher ist das neuropathologische Korrelat der Hyperechogenität nicht sicher bekannt und Langzeituntersuchungen asymptomatischer Probanden mit vermehrter Hyperechogenität sind erst begonnen worden. Es muss sich insofern erst in Zukunft zeigen, inwieweit die Methode in der Frühdiagnostik des Parkinson-Syndroms bzw. in der Detektion einer erhöhten nigrostriatalen Vulnerabilität vor Ausbruch der Krankheit von Nutzen ist.

Summary

Transcranial sonography (TCS) of the brain parenchyma is a non-invasive and easily applicable neuroimaging technique which is used as a diagnostic tool in Parkinson’s disease. Up to 90% of patients with idiopathic Parkinson’s disease but only 10–15% of the healthy population show an abnormal echogenicity (hyperechogenicity) of the substantia nigra (SN). TCS has been demonstrated to be a useful tool in the differential diagnosis of patients with essential tremor or atypical parkinsonian syndromes, including the parkinsonian variant of multiple system atrophy (MSA-P) and progressive supranuclear palsy (PSP) where hyperechogenicity of the SN is less frequent. Abnormal echogenicity of the SN has been found in almost all investigated monogenic types of parkinsonism and even in asymptomatic mutation carriers. The nature of the pathological substrate leading to the abnormal echogenicity of the SN remains elusive. Longitudinal studies of asymptomatic subjects with abnormal echogenicity of the SN are still ongoing to evaluate the risk for developing Parkinson’s disease in the future in these subjects.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. 1.

    Becker G, Berg D (2001) Neuroimaging in basal ganglia disorder: perspectives for transcranial ultrasound. Mov Disord 16:23–32

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Seidel G, Kaps M, Dorndorf W (1993) Transcranial color-coded duplex sonography of intracerebral hematomas in adults. Stroke 24:1519–1527

    CAS  PubMed  Google Scholar 

  3. 3.

    Maeurer M, Shambal S, Berg D et al (1998) Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke 29:2563–2567

    Google Scholar 

  4. 4.

    Seidel G, Kaps M, Gerriets T et al (1995) Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging 5:105–108

    CAS  PubMed  Google Scholar 

  5. 5.

    Becker G, Seufert J, Bogdahn U et al (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    CAS  PubMed  Google Scholar 

  6. 6.

    Naumann M, Becker G, Toyka KV et al (1996) Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology 47:1284–1290

    CAS  PubMed  Google Scholar 

  7. 7.

    Postert T, Lack B, Kuhn W et al (1999) Basal ganglia alterations and brain atrophy in Huntington’s disease depicted by transcranial real time sonography. J Neurol Neurosurg Psychiatry 67:457–462

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Walter U, Krolikowski K, Tarnacka B et al (2005) Sonographic detection of basal ganglia lesions in asymptomatic and symptomatic Wilson disease. Neurology 4:1726–1732

    Article  Google Scholar 

  9. 9.

    Vlaar AM, Bouwmans A, Mess WH et al (2009) Transcranial duplex in the differential diagnosis of parkinsonian syndromes: a systematic review. J Neurol 256:530–538

    Article  PubMed  Google Scholar 

  10. 10.

    Hagenah J, König IR, Sperner J et al (2010) Life-long increase of substantia nigra hyperechogenicity in transcranial sonography. Neuroimage 51:28–32

    Article  PubMed  Google Scholar 

  11. 11.

    Walter U, Wittstock M, Benecke R et al (2002) Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. J Neural Transm 109:191–196

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Schweitzer KJ, Behnke S, Liepelt I et al (2007) Cross-sectional study discloses a positive family history for Parkinson’s disease and male gender as epidemiological risk factors for substantia nigra hyperechogenicity. J Neural Transm 114:1167–1171

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ruprecht-Dorfler P, Berg D, Tucha O, Benz P et al (2003) Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson’s disease. Neuroimage 18:416–422

    Article  PubMed  Google Scholar 

  14. 14.

    Hagenah JM, Becker B, Brüggemann N et al (2008) Transcranial sonography findings in a large family with homozygous and heterozygous PINK1 mutations. J Neurol Neurosurg Psychiatry 79:1071–1074

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Berg D, Grote C, Rausch WD et al (1999) Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 25:901–904

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Zecca L, Berg D, Arzberger T et al (2005) In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord 20:1278–1285

    Article  PubMed  Google Scholar 

  17. 17.

    Berg D, Merz B, Reiners K et al (2005) Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov Disord 20:383–385

    Article  PubMed  Google Scholar 

  18. 18.

    Loo S van de, Walter U, Behnke S et al (2010) Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry [Epub ahead of print]

  19. 19.

    Spiegel J, Hellwig D, Möllers MO et al (2006) Transcranial sonography and [123I]FP-CIT SPECT disclose complementary aspects of Parkinson’s disease. Brain129:1188–1193

  20. 20.

    Weise D, Lorenz R, Schliesser M et al (2009) Substantia nigra echogenicity: A structural correlate of functional impairment of the dopaminergic striatal projection in Parkinson’s disease. Mov Disord 24:1669–1675

    Article  PubMed  Google Scholar 

  21. 21.

    Walter U, Klein C, Hilker R et al (2004) Brain parenchyma sonography detects preclinical parkinsonism. Mov Disord 19:1445–1449

    Article  PubMed  Google Scholar 

  22. 22.

    Walter U, Dressler D, Wolters A et al (2007) Transcranial brain sonography findings in clinical subgroups of idiopathic Parkinson’s disease. Mov Disord 22:48–54

    Article  PubMed  Google Scholar 

  23. 23.

    Stockner H, Sojer M, Seppi K et al (2007) Midbrain sonography in patients with essential tremor. Mov Disord 22:414–417

    Article  PubMed  Google Scholar 

  24. 24.

    Doepp F, Plotkin M, Siegel L et al (2008) Brain parenchyma sonography and 123I-FP-CIT SPECT in Parkinson’s disease and essential tremor. Mov Disord 3:405–410

    Article  Google Scholar 

  25. 25.

    Budisic M, Trkanjec Z, Bosnjak J et al (2009) Distinguishing Parkinson’s disease and essential tremor with transcranial sonography. Acta Neurol Scand 119:17–21

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Walter U, Niehaus L, Probst T et al (2003) Brain parenchyma sonography discriminates Parkinson‚s disease and atypical parkinsonian syndromes. Neurology 60:74–77

    CAS  PubMed  Google Scholar 

  27. 27.

    Behnke S, Berg D, Naumann M et al (2005) Differentiation of Parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J Neurol Neurosurg Psychiatry 76:423–425

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Walter U, Dressler D, Probst T et al (2007) Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol 64:1635–1640

    Article  PubMed  Google Scholar 

  29. 29.

    Walter U, Dressler D, Wolters A et al (2006) Sonographic discrimination of dementia with Lewy bodies and Parkinson’s disease with dementia. J Neurol 253:448–454

    Article  PubMed  Google Scholar 

  30. 30.

    Walter U, Dressler D, Wolters A et al (2004) Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology 63:504–509

    CAS  PubMed  Google Scholar 

  31. 31.

    Brueggemann N, Odin P, Gruenewald A et al (2008) Alpha-synuclein gene duplication is present in sporadic Parkinson disease. Neurology 71:1294 (author reply 1294)

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hagenah JM, König IR, Becker B et al (2007) Substantia nigra hyperechogenicity correlates with clinical status and number of Parkin mutated alleles. J Neurol 254:1407–1413

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Schweitzer KJ, Brüssel T, Leitner P et al (2007) Transcranial ultrasound in different monogenetic subtypes of Parkinson’s disease. J Neurol 254:613–616

    Article  PubMed  Google Scholar 

  34. 34.

    Hedrich K, Winkler S, Hagenah J et al (2006) Recurrent LRRK2 (Park8) mutations in early-onset Parkinson’s disease. Mov Disord 21:1506–1510

    Article  PubMed  Google Scholar 

  35. 35.

    Brüggemann N, Hagenah J, Reetz K et al (2010) Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging phenotype. Arch Neurol (in press)

  36. 36.

    Sommer U, Hummel T, Cormann K et al (2004) Detection of presymptomatic Parkinson’s disease: combining smell tests, transcranial sonography, and SPECT. Mov Disord 19:1196–1202

    Article  PubMed  Google Scholar 

  37. 37.

    Unger MM, Möller JC, Stiasny-Kolster K et al (2008) Assessment of idiopathic rapid-eye-movement sleep behavior disorder by transcranial sonography, olfactory function test, and FP-CIT-SPECT. Mov Disord 23:596–599

    Article  PubMed  Google Scholar 

  38. 38.

    Fratelli N, Taddei F, Prefumo F et al (2009) Interobserver reproducibility of transabdominal 3-dimensional sonography of the fetal brain. J Ultrasound Med 28:1009–1013

    PubMed  Google Scholar 

  39. 39.

    Homapour B, Bowen JE, Want EJ et al (2010) Intra-operative, real-time, three-dimensional ultrasound assisted positioning of catheters in the microdialysis of glial tumours. J Clin Neurosci 17:506–510

    Article  PubMed  Google Scholar 

  40. 40.

    Heliopoulos J, Vadikolias K, Mitsias P et al (2008) A three-dimensional ultrasonographic quantitative analysis of non-ulcerated carotid plaque morphology in symptomatic and asymptomatic carotid stenosis. Atherosclerosis 198:129–135

    CAS  Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Referententätigkeit für GSK und Orion Pharma. Daraus ergibt sich kein Interessenkonflikt für die vorgelegte Arbeit.

Author information

Affiliations

Authors

Corresponding author

Correspondence to PD Dr. J. Hagenah.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hagenah, J., Seidel, G. Parenchym-Ultraschall bei Parkinson-Syndromen. Nervenarzt 81, 1189–1195 (2010). https://doi.org/10.1007/s00115-010-3025-5

Download citation

Schlüsselwörter

  • Parkinson-Syndrom
  • Ultraschall
  • Substantia nigra
  • Hirnparenchym
  • Hyperechogenität

Keywords

  • Parkinson disease
  • Ultrasound
  • Substantia nigra
  • Brain parenchyma
  • Hyperechogenicity