Der Nervenarzt

, Volume 81, Issue 6, pp 740–746 | Cite as

„Chronische zerebrospinale venöse Insuffizienz“ und Multiple Sklerose

Kritische Analyse und erste Untersuchungen an einem unselektierten MS-Kollektiv
  • C. Krogias
  • A. Schröder
  • H. Wiendl
  • R. Hohlfeld
  • R. Gold
Aktuelles

Zusammenfassung

Über die Hypothese eines möglichen ursächlichen Zusammenhangs von Störungen der zerebralen venösen Hämodynamik und der Entstehung der Multiplen Sklerose (MS) wird aktuell kontrovers diskutiert. Die neue „venöse Hypothese“ postuliert, dass Abflussstörungen des zervikalen Venensystems eine Stauung und Druckerhöhung des intrakraniellen Venensystems mit nachfolgender Entzündungsreaktion bedingen. Diese Hypothese wird unter drei Gesichtspunkten analysiert und bewertet: (1) Validität der publizierten Befunde, (2) Plausibilität im Licht derzeitig akzeptierter Pathogenesemodelle der MS und (3) Kompatibilität mit ersten eigenen Untersuchungen.

Die Autoren kommen zu der Schlussfolgerung, dass die „venöse Hypothese“ als ausschließliche Ursache die MS keinesfalls erklären kann. Lediglich 20% unseres unselektierten MS-Kollektivs erfüllten zwei der neu aufgestellten neurosonologischen Kriterien einer „chronischen zerebrospinalen venösen Insuffizienz“. Die pathogenetische Relevanz dieser subtilen Veränderungen der venösen Flussverhältnisse ist derzeit völlig offen. Ebenfalls ist unklar, inwieweit diese Veränderungen Grund oder Folge der MS sind. Keinesfalls lassen sich damit nach derzeitigem Erkenntnisstand invasive „therapeutische“ Maßnahmen rechtfertigen, insbesondere nicht außerhalb kontrollierter Studienprotokolle.

Schlüsselwörter

Multiple Sklerose Venöse Insuffizienz Ultraschall Chronische zerebrospinale venöse Insuffizienz Zervikale Venen 

„Chronic cerebrospinal venous insufficiency” and multiple sclerosis

Critical analysis and first observation in an unselected cohort of MS patients

Summary

Currently, the hypothesis that altered venous hemodynamics might play a causative role in the pathogenesis of multiple sclerosis (MS) is being controversially discussed. This new „venous hypothesis“ postulates that obstructions of the cervical venous system cause an increased pressure of the intracranial venous system and that in turn intracranial congestion disintegrates the blood-brain barrier initiating the inflammatory process in MS.

The „venous hypothesis“ is analyzed and evaluated with regard to the following aspects: first concerning the validity of published data, second with regard to the plausibility in view of the currently approved pathogenetic model of MS, and third with regard to the compatibility with preliminary neurosonological findings in a small but unselected cohort of patients at our department.

The authors conclude that the „chronic cerebrospinal venous insufficiency (CCSVI)“ cannot represent the exclusive pathogenetic factor in the pathogenesis of MS. In our cohort, only 20% of the patients fulfilled the required neurosonological features of CCSVI. So far, the pathogenetic relevance of these findings remains speculative. Thus, based on the current scientific position we cannot justify invasive „therapeutic“ approaches, especially if they are performed outside of clinical trials.

Keywords

Multiple sclerosis Venous insufficiency Ultrasound Chronic cerebrospinal venous insufficiency Cervical veins 

Literatur

  1. 1.
    Ackermann Z, Seidenbaum M, Loewenthal E, Rubinow A (1988) Overload of iron in the skin of patients with varicose ulcers. Possible contributing role of iron accumulation in progression of the disease. Arch Dermatol 124:1376–1378CrossRefGoogle Scholar
  2. 2.
    Adams CW, Poston RN, Buk SJ (1989) Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci 92:291–306CrossRefPubMedGoogle Scholar
  3. 3.
    Colleridge-Smith PD, Thomas P, Scurr JH, Domandy JA (1988) Causes of venous ulceration: a new hypothesis. BMJ 296:1726–1727CrossRefGoogle Scholar
  4. 4.
    Doepp F, Schreiber SJ, Münster T von et al (2004) How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology 46:565–570CrossRefPubMedGoogle Scholar
  5. 5.
    Doepp F, Schreiber JS, Valdueza JM (2007) Incompetence of internal jugular vein valve in patients with primary exertional headache: a risk factor? Cephalalgia 28:182–185PubMedGoogle Scholar
  6. 6.
    Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm 113:477–485CrossRefPubMedGoogle Scholar
  7. 7.
    Fog T (1965) The topography of plaques in multiple sclerosis with special reference to cerebral plaques. Acta Neurol Scand 15 [Suppl]:1–161Google Scholar
  8. 8.
    Gay D, Esiri M (1991) Blood-brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Brain 114:557–572CrossRefPubMedGoogle Scholar
  9. 9.
    Ge Y, Zohrabian VM, Grossman RI (2008) Seven-tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol 65:812–816CrossRefPubMedGoogle Scholar
  10. 10.
    Gold R, Rieckmann P (2005) Pathogenese und Therapie der Multiplen Sklerose. 3. Aufl. UNI-MED, BremenGoogle Scholar
  11. 11.
    Hoffmann O, Weih M, Münster T von et al (1999) Blood flow velocities in the vertebral veins of healthy subjects: a duplex sonographic study. J Neuroimaging 9:198–200PubMedGoogle Scholar
  12. 12.
    Kidd D, Barkhof F, McConnell R et al (1999) Cortical lesions in multiple sclerosis. Brain 122:17–26CrossRefPubMedGoogle Scholar
  13. 13.
    Kuenz B, Lutterotti A, Khalil M et al (2005) Plasma levels of soluble adhesion molecules sPECAM-1, sP-selectin and sE-selectin are associated with relapsing-remitting disease course of multiple sclerosis. J Neuroimmunol 167:143–149CrossRefPubMedGoogle Scholar
  14. 14.
    Lassmann H, Brück W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218CrossRefPubMedGoogle Scholar
  15. 15.
    Martino G, Adorini L, Rieckmann P et al (2002) Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurol 1:499–509CrossRefPubMedGoogle Scholar
  16. 16.
    Miller DH, Barkhof F, Nauta JJP (1993) Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis. Brain 116:1077–1094CrossRefPubMedGoogle Scholar
  17. 17.
    Mueller HR, Hinn G, Buser MW (1990) Internal jugular venous flow measurement by means of a duplex scanner. J Ultrasound Med 9:261–265Google Scholar
  18. 18.
    Nadelmann M, Eicke BM, Dieterich M (2005) Functional and morphological criteria of internal jugular valve insufficiency as assessed by ultrasound. J Neuroimaging 15:70–75Google Scholar
  19. 19.
    Schreiber SJ, Doepp F, Klingebiel R, Valdueza JM (2005) Internal jugular vein valve incompetence and intracranial venous anatomy in transient global amnesia. J Neurol Neurosurg Psychiatry 76:509–513CrossRefPubMedGoogle Scholar
  20. 20.
    Singh AV, Zamboni P (2009) Anomalous venous blood flow and iron depositino in multiple sclerosis. J Cereb Blood Flow Metab 29:1867–1878CrossRefPubMedGoogle Scholar
  21. 21.
    Stolz E, Kaps M, Kern A et al (1999) Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. Reference data from 130 volunteers. Storke 30:1070–1075Google Scholar
  22. 22.
    Stolz E, Babacan SS, Bodecker RH et al (2001) Interobserver and intraobserverreliability of venous trancranial color-coded flow velocity. J Neuroimaging 11:385–392CrossRefPubMedGoogle Scholar
  23. 23.
    Takase S, Pascarella L, lerond L et al (2004) Venous hypertension, inflammation and valve remodelling. Eur J Vasc Endovasc Surg 28:484–493CrossRefPubMedGoogle Scholar
  24. 24.
    Valdueza JM, Munster T von, Hoffman O et al (2000) Postural dependency of the cerebral venous outflow. Lancet 355:200–201PubMedGoogle Scholar
  25. 25.
    Walter U, Wagner S, Horowski S et al (2009) Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology 73:1010–1017CrossRefPubMedGoogle Scholar
  26. 26.
    Weilbach FX, Chan A, Toyka KV, Gold R (2004) The cardioprotector dexrazoxane augments therapeutic efficacy of mitoxantrone in experimental autoimmune encephalomyelitis. Clin Exp Immunol 135:49–55CrossRefPubMedGoogle Scholar
  27. 27.
    Wilkinson LS, Bunker C, Edwards JC et al (1993) Leukocytes: their role in the etiopathogenesis of skin damage in venous disease. J Vasc Surg 17:669–675CrossRefPubMedGoogle Scholar
  28. 28.
    Zamboni P (2006) The big idea: Iron-dependent inflammation in venous disease and proposed parallels in multiple sclerosis. J R Soc Med 99:589–593CrossRefPubMedGoogle Scholar
  29. 29.
    Zamboni P, Galeotti R, Menegatti E et al (2009) Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 80:392–399CrossRefPubMedGoogle Scholar
  30. 30.
    Zamboni P, Galeotti R, Menegatti E et al (2009) A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. J Vasc Surg 50:1348–1358CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Krogias
    • 1
  • A. Schröder
    • 1
  • H. Wiendl
    • 2
  • R. Hohlfeld
    • 3
  • R. Gold
    • 1
  1. 1.Neurologische Klinik, St. Josef-HospitalRuhr-Universität BochumBochumDeutschland
  2. 2.Klinik und Poliklinik für NeurologieJulius-Maximilians-Universität WürzburgWürzburgDeutschland
  3. 3.Institut für Klinische NeuroimmunologieKlinikum der Ludwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations