Skip to main content
Log in

Genetik der kognitiven Fähigkeiten in der Lebensspanne

Genetic aspects of cognitive abilities across the life span

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Kognitive Fähigkeiten entwickeln sich über die ersten beiden Lebensjahrzehnte und nehmen an Leistungsstärke ab dem 6. Lebensjahrzehnt kontinuierlich ab. In allen Entwicklungsphasen stehen dabei die allgemeine/globale kognitive Leistungsfähigkeit und spezifische Kognitionen unter starkem genetischem Einfluss (mit insgesamt zunehmendem Umfang bis ca. 80 Lebensjahre); Analoges gilt für die krankheitswertigen Ausprägungen von kognitiven Fehlentwicklungen. Hereditäre Einflussfaktoren werden phasenspezifisch im Zusammenspiel mit Umweltfaktoren diskutiert und zwischen den Lebensphasen verglichen.

Summary

Cognitive abilities develop during the first 2 decades and start to decrease in the 6th decade of life. There is strong heritability of general cognitive ability as well as of specific cognitive functions which might increase with age till about age 80. Cognitive disorders derive from this physiological cognitive development; they are also under genetic control. This paper discusses age-specific genetic influences on cognitive functions in interplay with environmental factors and compares these determinants across the life span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Alexander DM, Williams LM, Gatt JM et al (2007) The contribution of apolipoprotein E alleles on cognitive performance and dynamic actiivty over six decades. Biol Psychol 75:229–238

    Article  CAS  PubMed  Google Scholar 

  2. Baltes PB, Staudinger UM, Lindenberger U (1999) Lifespan psychology: theory and application to intellectual functioning. Annu Rev Psychol 50:471–507

    Article  CAS  PubMed  Google Scholar 

  3. Bates TC, Price JF, Harris SE et al (2009) Association of Kibra and memory. Neurosci Lett 458:140–143

    Article  CAS  PubMed  Google Scholar 

  4. Bishop DVM (2009) Genes, cognition, and communication insights from neurodevelopmental disorders. Ann N Y Acad Sci 1156:1–18

    Article  CAS  PubMed  Google Scholar 

  5. Bishop DVM (2002) The role of genes in the etiology of specific language impairment. J Commun Dis 35:311–328

    Article  CAS  Google Scholar 

  6. Bloss CS, Delis DC, Salmon DP, Bondi MW (2008) Decreased cognition in children with risk factors for Alzheimer’s disease. Biol Psychiatry 64:904–906

    Article  PubMed  Google Scholar 

  7. Boucard TJ, McGue M (2003) Genetic and environmental influences on human psychological differences. J Neurobiol 54:4–45

    Article  Google Scholar 

  8. Butcher LM, Davis OS, Craig IW, Plomin R (2008) Genome-wide quantitative trait locus association scan of general cognitive ability using pooled DNA and 500 K single nucleotide polymorphism microarrays. Genes Brain Behav 7(4):435–446

    Article  CAS  PubMed  Google Scholar 

  9. Caselli RJ, Dueck AC, Osborne D et al (2009) Longitudinal modeling of age-related memory decline and the APOE ε4 effect. N Engl J Med 361:255–263

    Article  CAS  PubMed  Google Scholar 

  10. Deary IJ, Whiteman MC, Patt A et al (2002) Cognitive change and the APOE ε4 allele. Nature 418:932

    Article  CAS  PubMed  Google Scholar 

  11. Deary IJ, Wright AF, Harris SE et al (2004) Searching for genetic influences on normal cognitive ageing. Trends Cogn Sci 8:178–184

    Article  PubMed  Google Scholar 

  12. De Blasi S, Montesanto A, Martino C et al (2009) APOE polymorphism affects episodic memory among non demented elderly subjects. Exp Gerontol 44:224–227

    Article  Google Scholar 

  13. DeFries JC, Fulker DW (1985) Multiple regression analysis of twin data. Behav Genet 15:467–473

    Article  CAS  PubMed  Google Scholar 

  14. Finkel D, Reynolds CA, McArdle JJ et al (2009) Genetic variance in processing speed drives variation in aging of spatial and memory abilities. Develop Psychol 45(3):820–834

    Article  Google Scholar 

  15. Gabrieli JD (2009) Dyslexia: a new synergy between education and cognitive neuroscience. Science 325:280–283

    Article  CAS  PubMed  Google Scholar 

  16. Gatz M, Pedersen NL, Plomin R et al (1992) The importance of shared genes and shared environments for symptoms of depression in older adults. J Abnorm Psychol 52:1177–1125

    Google Scholar 

  17. Gatz M, Reynolds CA, Fratiglioni L et al (2006) Role of genes and environments for explaining alzheimer disease. Arch Gen Psychiatry 63:168–174

    Article  PubMed  Google Scholar 

  18. Giubilei F, Medda E, Fagnani C et al (2008) Heritability of neurocognitive functioning in the elderly: evidence from an Italian twin study. Age Ageing 27:640–646

    Article  Google Scholar 

  19. Gibson G (2009) Decanalization and the origin of complex disease. Nature 10:134–140

    CAS  Google Scholar 

  20. Goldberg T, Weinberger DR (2004) Genes and the parsing of cognitive processe. Trends Cogn Sci 8(7):325–335

    Article  PubMed  Google Scholar 

  21. Harold D, Paracchini S, Scerri T et al (2006) Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Mol Psychiatry 11:1085–1091

    Article  CAS  PubMed  Google Scholar 

  22. Haworth CMA, Wright MJ, Luciano M et al (2009) The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatry (Epub ahead of print June 2, 2009)

  23. Haworth CMA, Kovas Y, Harlaar N et al (2009) Generalist genes and learning disabilities: a multivariate genetic analysis of low performance in reading, mathematics, language and general cognitive ability in a sample of 8000 12-year-old twins. J Child Psychol Psychiatry 50 (10):1318–1325

    Article  PubMed  Google Scholar 

  24. Haworth CMA, Kovas Y, Petrill SA, Plomin R (2007) Developmental origins of low mathematics performance and normal variation in twin from 7 to 9 years. Twin Res Hum Genet 10(1):106–117

    Article  PubMed  Google Scholar 

  25. Hayiou-Thomas ME (2008) Genetic and environmental influences on early speech, language and literacy development. J Commun Disord 41:397–408

    Article  PubMed  Google Scholar 

  26. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  PubMed  Google Scholar 

  27. Kim KH, Relkin NR, Lee KM, Hirsch J (1997) Distinct cortical areas associated with native and second languages. Nature 388(6638):171–174

    Article  CAS  PubMed  Google Scholar 

  28. Kovács AM, Mehler J (2009) Flexible learning of multiple speech structures in bilingual infants. Science 325:611–612

    Article  PubMed  Google Scholar 

  29. Lee BK, Glass TA, Wand GS et al (2008) Apolipoprotein E genotype, cortisol and cognitive function in community-dwelling older adults. Am J Psychiatry 165:1456–1464

    Article  PubMed  Google Scholar 

  30. Lindenberger U, Nagel IE, Chicherio C et al (2008) Age-related decline in brain resources modulates genetic effects on cognitive functioning. Neuroscience 2(2):234–244

    CAS  Google Scholar 

  31. Luciano M, Gow AJ, Taylor MD et al (2009) Apolipoprotein E is not related to memory abilities at 70 years of age. Behav Genet 39:6–14

    Article  PubMed  Google Scholar 

  32. Mattay VS, Goldberg TE, Sambataro F, Weinberger DR (2008) Neurobiology of cognitive aging: Insights from imaging genetics. Biol Psychol 79:9–22

    Article  PubMed  Google Scholar 

  33. McClearn GE, Johansson B, Berg S et al (1997) Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276:1560–1563

    Article  CAS  PubMed  Google Scholar 

  34. McGue M, Hirsch B, Lykken DT (1993) Age and self-perception of ability: a twin study analysis. Psychol Aging 8:72–89

    Article  CAS  PubMed  Google Scholar 

  35. Meaburn EL, Harlaar N, Craig IW et al (2008) Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100 K SNP microarrays in a sample of 5760 children. Mol Psychiatry 13(7):729–40

    Article  CAS  PubMed  Google Scholar 

  36. Meltzoff AN, Kuhl PK, Movellan J, Sejnowski TJ (2009) Foundations for a new science of learning. Science 325(5938):284–288

    Article  CAS  PubMed  Google Scholar 

  37. Mondadori C, de Quervain D, Buchmann A et al (2006) Better memory and neural efficiency in young apolipoprotein e ε4 carriers. Cereb Cortex 17:1934–1947

    Article  PubMed  Google Scholar 

  38. Nagel JE, Chicherio C, Li SC et al (2008) Human aging magnifies genetic effects on executive functioning and working memory. Front Hum Neurosci 2:1–8

    Article  PubMed  Google Scholar 

  39. Newbury DF, Winchester L, Addis L et al (2009) CMIP and ATP2C2 modulate phonological short-term memory in language impairment. Am J Hum Genet 85:264–272

    Article  PubMed  Google Scholar 

  40. Oliver BR, Plomin R (2007) Twins Early Development Study (TEDS): A multivariate, longitudinal genetic investigation of language, cognition and behavior problems from childhood through adolescence. Twin Res Hum Genet 10:96–105

    Article  PubMed  Google Scholar 

  41. Papassotiropopoulos A, Stephan DA, Huentelmann MJ et al (2006) Common KIBRA alleles are associated with human memory performance. Science 314:475–478

    Article  Google Scholar 

  42. Pedersen NL, McClearn GE, Plomin R, Nesselroade JR (1992) Effects of early rearing environment on twin similarity in the last half of the life span. Br J Dev Psychol 10:255–267

    Google Scholar 

  43. Petrill SA, Johannsson B, Pedersen NL et al (2001) Low cognitive functioning in nondemented 80+-year-old twins is not heriable. Science 29:75–83

    Google Scholar 

  44. Plomin R, DeFries JC (1985) A parent-offspring adoption study of cognitive abilities in early childhood. Intelligence 9:341–356

    Article  Google Scholar 

  45. Plomin R, DeFries JC, McClearn GE, McGuffin P (2008) Behavioral genetics. 5th edn. Worth Publishers, New York

  46. Plomin R, Kovas Y (2005) Generalist genes and learning disabilities. Psychol Bull 131:592–617

    Article  PubMed  Google Scholar 

  47. Poustka F (2004) Umfeldeinflüsse, Genetik und die kindliche Entwicklung. Methodische Probleme, Ergebnisse und ungelöste Fragen. Nervenheilkunde 36(6):308–314

    Google Scholar 

  48. Reiman EM, Caselli RJ, Yun LS et al (1994) Preclinical evidence of Alzheimer’s disease in persons homozygous forthe ε4 allele for apolipoprotein E. N Engl J Med 334:752–758

    Article  Google Scholar 

  49. Reynolds CA, Finkel D, Gatz M, Pedersen N (2002) Sources of influence on rate of cognitive change over time in swedisch twins: an application of latent growth models. Exp Aging Res 28:407–433

    Article  PubMed  Google Scholar 

  50. Reynolds CA, Finkel D, McArdle JJ et al (2005) Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Dev Psychol 41(1):3–16

    Article  PubMed  Google Scholar 

  51. Schaper K, Kölsch H, Popp J et al (2008) KIBRA gene variants are associated with episodic memory in healthy elderly. Neurobiol Aging 29:1123–1125

    Article  CAS  PubMed  Google Scholar 

  52. Sundet JM, Eriksan W, Tambs K (2008) Intelligence correlations between brothers decrease with increading age differences. Psychol Sci 19(9):843–847

    Article  PubMed  Google Scholar 

  53. Thompson PM, Cannon TD, Narr KL et al (2001) Genetic influences on brain structure. Nat Neurosci 4(12):1253–1258

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Die Autoren weisen auf folgende Beziehungen hin:

F. Poustka: Erhielt Beratertätigkeit/Vortragstätigkeit/Projektförderung von: Lilly, Lundbeck, Janssen-Cilag, Medice, Novartis.

W. Maier: Erhielt Projektförderung bzw. Beratertätigkeit, Vortragstätigkeit von: Novartis, Pfizer, Lundbeck, Lilly, Böhringer Ingelheim, Janssen-Cilag, Otsuka, Baxter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Poustka or W. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poustka, F., Maier, W. Genetik der kognitiven Fähigkeiten in der Lebensspanne. Nervenarzt 80, 1312–1321 (2009). https://doi.org/10.1007/s00115-009-2804-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-009-2804-3

Schlüsselwörter

Keywords

Navigation