Skip to main content
Log in

Multiple Sklerose – eine Kanalopathie?

Ionenkanäle und Transporter als pharmakologische Zielstrukturen in entzündlicher Neurodegeneration

Multiple sclerosis – a channelopathy?

Targeting ion channels and transporters in inflammatory neurodegeneration

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Multiple Sklerose (MS) wurde bisher als entzündlich-demyelinisierende Erkrankung des zentralen Nervensystems betrachtet, bei der die Störung der elektrischen Erregungsleitung in zentralen Neuronen und die damit verbundene, schubförmig auftretende neurologische Symptomatik durch den Abbau der Myelinscheide bedingt ist. Doch die im Verlauf typischerweise auftretende Akkumulation dauerhafter klinisch-neurologischer Defizite kann allein durch de- und remyelinisierende Prozesse nicht zufrieden stellend erklärt werden. Sie wird heute vielmehr als Folge einer axonalen/neuronalen Degeneration betrachtet, die abhängig vom Stadium der Erkrankung verschiedene Ursachen haben kann: 1. Neuronen und deren Axone werden während der akuten Entzündung durch infiltrierende Lymphozyten und Makrophagen sowie aktivierte Gliazellen entweder durch direkten Zell-Zell-Kontakt oder die Freisetzung verschiedener Mediatoren (NO, Glutamat) geschädigt; 2. durch Schädigung der die Myelinscheide bildenden Oligodendrozyten kommt es indirekt durch einen fehlenden trophischen Einfluss auf das Axon zur axonalen Degeneration; 3. durch eine veränderte Verteilung und Expression verschiedener Ionenkanäle und Transporter kommt es im demyelinisierten Axon zu einer lokal gesteigerten elektrischen Aktivität und einer intrazellulären Kalziumakkumulation mit nachfolgender mitochondrialer Dysfunktion und neuronalem Zelltod.

Das neuroprotektive Potenzial einer pharmakologische Modulation dieser Ionenkanäle und Transporter mit zum Teil bereits zugelassenen Substanzen ist zum einen tierexperimentell bereits gut belegt und zum anderen nun auch Gegenstand erster klinischer Studien.

Summary

Multiple sclerosis (MS) has traditionally been regarded as an inflammatory demyelinating disorder of the CNS in which clinical symptoms result from axon conduction block caused by myelin degradation. However, typical accumulation of permanent neurological deficits during the clinical course of MS cannot be explained solely by de- and remyelinating processes. It is considered to be rather due to neuronal degeneration, for which several reasons could be identified depending on the state of the disease. First, neurons and their axons can be damaged by infiltrating lymphocytes and macrophages either directly by cell-to-cell contact or by the release of harmful mediators such as nitric oxide or glutamate. Second, indirect injury to neurons and axons may occur through the loss of trophic support by neighbouring oligodendrocytes due to destruction of both the myelin sheath and the oligodendrocyte itself. Third, redistribution of certain voltage- and ligand-gated ion channels and transporters along naked demyelinated axons restores axonal conduction but also leads to excessive spatially restricted electrical activity of the axonal membrane, intracellular calcium accumulation, impairment of mitochondrial function, and subsequent neuronal degeneration. The neuroprotective potential of pharmacological modulation of these channels and transporters using already approved drugs has been demonstrated in several animal studies, is the subject of current clinical trials and will be the topic of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Beeton C, Chandy KG (2005) Potassium channels, memory T cells, and multiple sclerosis. Neuroscientist 11: 550–562

    Article  PubMed  CAS  Google Scholar 

  2. Beraud E, Viola A, Regaya I et al. (2006) Block of neural Kv1.1 potassium channels for neuroinflammatory disease therapy. Ann Neurol 60: 586–596

    Article  PubMed  CAS  Google Scholar 

  3. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14: 271–278

    Article  PubMed  CAS  Google Scholar 

  4. Brand-Schieber E, Werner P (2004) Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Exp Neurol 189: 5–9

    Article  PubMed  CAS  Google Scholar 

  5. Buckley C, Vincent A (2005) Autoimmune channelopathies. Nat Clin Pract Neurol 1: 22–33

    Article  PubMed  CAS  Google Scholar 

  6. Butt AM, Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10: 33–44

    Article  PubMed  CAS  Google Scholar 

  7. Dutta R (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59: 478–489

    Article  PubMed  CAS  Google Scholar 

  8. Edwards L, Nashmi R, Jones O et al. (2002) Upregulation of Kv 1.4 protein and gene expression after chronic spinal cord injury. J Comp Neurol 443: 154–167

    Article  PubMed  CAS  Google Scholar 

  9. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120 (Pt 3): 393–399

    Article  PubMed  Google Scholar 

  10. Friese MA, Craner MJ, Etzensperger R et al. (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13: 1483–1489

    Article  PubMed  CAS  Google Scholar 

  11. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 354: 942–955

    Article  PubMed  CAS  Google Scholar 

  12. Griffiths I, Klugmann M, Anderson T et al. (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280: 1610–1613

    Article  PubMed  CAS  Google Scholar 

  13. Hanna MG (2006) Genetic neurological channelopathies. Nat Clin Pract Neurol 2: 252–263

    Article  PubMed  CAS  Google Scholar 

  14. Hara MR, Snyder SH (2007) Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol 47: 117–141

    Article  PubMed  CAS  Google Scholar 

  15. Kornek B (2000) Multiple sclerosis and chronic autoimmuno encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive and remyelinated lesions. Am J Pathol 157: 267–276

    PubMed  CAS  Google Scholar 

  16. Lappe-Siefke C, Goebbels S, Gravel M et al. (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33: 366–374

    Article  PubMed  CAS  Google Scholar 

  17. Li C, Tropak MB, Gerlai R et al. (1994) Myelination in the absence of myelin-associated glycoprotein. Nature 369: 747–750

    Article  PubMed  CAS  Google Scholar 

  18. Linker RA, Maurer M, Gaupp S et al. (2002) CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 8: 620–624

    Article  PubMed  CAS  Google Scholar 

  19. Meuth SG, Bittner S, Meuth P et al. (2008) TWIK-related acid sensitive K+ channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions. J Biol Chem (in press)

  20. Nashmi R, Fehlings MG (2001) Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Brain Res Rev 38: 165–191

    Article  PubMed  CAS  Google Scholar 

  21. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6: 67–70

    Article  PubMed  CAS  Google Scholar 

  22. Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6: 62–66

    Article  PubMed  CAS  Google Scholar 

  23. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23: 683–747

    Article  PubMed  CAS  Google Scholar 

  24. Trapp BD (1998) Axonal transection in the lesions of multiple sclerosis. New Engl J Med 338: 278–285

    Article  PubMed  CAS  Google Scholar 

  25. Vianna-Jorge R, Suarez-Kurtz G (2004) Potassium channels in T lymphocytes: therapeutic targets for autoimmune disorders? BioDrugs 18: 329–341

    Article  PubMed  CAS  Google Scholar 

  26. Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7: 932–941

    Article  PubMed  CAS  Google Scholar 

  27. Waxman SG (2002) Ion channels and neuronal dysfunction in multiple sclerosis. Arch Neurol 59: 1377–1380

    Article  PubMed  Google Scholar 

  28. Waxman SG (2008) Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis – current status. Nat Clin Pract Neurol 4: 159–169

    Article  PubMed  CAS  Google Scholar 

  29. Waxman SG (2001) Transcriptional channelopathies: an emerging class of disorders. Nat Rev Neurosci 2: 652–659

    Article  PubMed  CAS  Google Scholar 

  30. Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50: 169–180

    Article  PubMed  CAS  Google Scholar 

  31. Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70: 363–386

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S.G. Meuth or H. Wiendl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meuth, S., Melzer, N., Kleinschnitz, C. et al. Multiple Sklerose – eine Kanalopathie?. Nervenarzt 80, 422–429 (2009). https://doi.org/10.1007/s00115-008-2599-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-008-2599-7

Schlüsselwörter

Keywords

Navigation