Skip to main content
Log in

Patientenauswahl zur Thrombolyse mittels Perfusions- und Diffusions-MRT

Aktuelle Datenlage

Patient selection for thrombolysis using perfusion and diffusion MRI

An overview

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die multiparametrische MRT mit Diffusions- und Perfusionsbildgebung gibt in einem Untersuchungsgang Informationen über das Ausmaß des bereits ischämisch geschädigten Gewebes, die Größe des kritisch minderperfundierten Areals und den Gefäßstatus. Über das Perfusions-Diffusions-Mismatch lässt sich vom Untergang bedrohtes Gewebe identifizieren, das auch noch nach 3 h nach Symptombeginn durch eine erfolgreiche Reperfusionstherapie gerettet werden kann. Neuere Studien zum Mismatch-Konzept haben gezeigt, dass Reperfusion eine entscheidende Bedingung für ein gutes Ergebnis nach einer Thrombolyse darstellt. Große Fallserien und nichtrandomisierte Kohortenstudien ergaben, dass bei mittels Perfusions-Diffusions-Mismatch ausgewählten Patienten eine intravenöse Thrombolyse jenseits des 3-Stunden-Zeitfensters sicher und effektiv durchgeführt werden kann; randomisierte kontrollierte Studien zur Effektivität der Mismatch-basierten Thrombolyse jenseits des 3-Stunden-Zeitfensters existieren allerdings bisher nicht. Bis eine solche Studie durchgeführt wird, kann in erfahrenen Zentren auch nach 3 h nach Symptombeginn eine Thrombolyse nach individueller Risikoabwägung anhand moderner Bildgebungsbefunde durchgeführt werden.

Summary

Multiparametric MRI including diffusion and perfusion imaging provides information on the extent of irreversibly damaged ischemic and/or critically hypoperfused tissue. Magnetic resonance angiography provides additional information on vessel status. The concept of perfusion-diffusion mismatch allows the estimation of tissue at risk of infarction which might be salvaged by timely reperfusion. In large case series and nonrandomized cohort studies, perfusion-diffusion mismatch-based thrombolysis was performed not less than 3 h after symptom onset with excellent safety and signs of good efficacy. However no randomised controlled trial has confirmed this to date. Recent studies improved the understanding of the mismatch concept and identified reperfusion unequivocally as an important predictor of the clinical response to thrombolysis. At the moment MRI-based thrombolysis can be performed after 3 h based on individual benefit:risk assessment in experienced stroke centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Adams HP Jr, del Zoppo G, Alberts MJ et al (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American heart association/american stroke association stroke council, clinical cardiology council, cardiovascular radiology and intervention council and the atherosclerotic peripheral vascular disease and quality of care outcomes in research interdisciplinary working groups: the american academy of neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38:1655–1711

    Article  PubMed  Google Scholar 

  2. Albers GW (1999) Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke 30:2230–2237

    PubMed  CAS  Google Scholar 

  3. Albers GW, Thijs VN, Wechsler L et al (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60:508–517

    Article  PubMed  Google Scholar 

  4. Anonymous (2008) Guidelines for management of ischaemic stroke and transient ischaemic attack. Cerebrovasc Dis 25:457–507

    Article  Google Scholar 

  5. Baron JC, Kummer R von, del Zoppo GJ (1995) Treatment of acute ischemic stroke. Challenging the concept of a rigid and universal time window. Stroke 26:2219–2221

    PubMed  CAS  Google Scholar 

  6. Chalela JA, Kidwell CS, Nentwich LM et al (2007) Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369:293–298

    Article  PubMed  Google Scholar 

  7. Davis SM, Donnan GA, Butcher KS et al (2005) Selection of thrombolytic therapy beyond 3 h using magnetic resonance imaging. Curr Opin Neurol 18:47–52

    Article  PubMed  CAS  Google Scholar 

  8. Davis SM, Donnan GA, Parsons MW et al (2008) Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 7:299–309

    Article  PubMed  Google Scholar 

  9. Fiebach JB, Schellinger PD, Gass A et al (2004) Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 35:502–506

    Article  PubMed  Google Scholar 

  10. Fiebach JB, Schellinger PD, Jansen O et al (2002) CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33:2206–2210

    Article  PubMed  CAS  Google Scholar 

  11. Fiehler J, Foth M, Kucinski T et al (2002) Severe ADC decreases do not predict irreversible tissue damage in humans. Stroke 33:79–86

    Article  PubMed  Google Scholar 

  12. Furlan AJ, Eyding D, Albers GW et al (2006) Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 37:1227–1231

    Article  PubMed  CAS  Google Scholar 

  13. Hacke W, Albers G, Al-Rawi Y et al (2005) The desmoteplase in acute ischemic stroke trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36:66–73

    Article  PubMed  CAS  Google Scholar 

  14. Hacke W, Furlan A, Investors ftD (2007) Results from the phase III study of desmoteplase in acute ischemi stroke trial 2 (DIAS 2). Cerebrovasc Dis 23:54

    Google Scholar 

  15. Hjort N, Butcher K, Davis SM et al (2005) Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke 36:388–397

    Article  PubMed  CAS  Google Scholar 

  16. Hoehn-Berlage M, Norris DG, Kohno K et al (1995) Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: the relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab 15:1002–1011

    PubMed  CAS  Google Scholar 

  17. Jansen O, Schellinger P, Fiebach J et al (1999) Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI. Lancet 353:2036–2037

    Article  PubMed  CAS  Google Scholar 

  18. Kakuda W, Lansberg MG, Thijs VN et al (2008) Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab 28:887–891

    Article  PubMed  Google Scholar 

  19. Kidwell CS, Alger JR, Saver JL (2003) Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 34:2729–2735

    Article  PubMed  Google Scholar 

  20. Kidwell CS, Chalela JA, Saver JL et al (2004) Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 292:1823–1830

    Article  PubMed  CAS  Google Scholar 

  21. Kidwell CS, Wintermark M (2008) Imaging of intracranial haemorrhage. Lancet Neurol 7:256–267

    Article  PubMed  Google Scholar 

  22. Kohrmann M, Juttler E, Fiebach JB et al (2006) MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol 5:661–667

    Article  PubMed  Google Scholar 

  23. Moseley ME, Kucharczyk J, Mintorovitch J et al (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. Am J Neuroradiol 11:423–429

    PubMed  CAS  Google Scholar 

  24. Muir KW, Buchan A, Kummer R von et al (2006) Imaging of acute stroke. Lancet Neurol 5:755–768

    Article  PubMed  Google Scholar 

  25. Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717

    Article  PubMed  Google Scholar 

  26. Parsons MW, Yang Q, Barber PA et al (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke 32:1581–1587

    PubMed  CAS  Google Scholar 

  27. Rha JH, Saver JL (2007) The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 38:967–973

    Article  PubMed  Google Scholar 

  28. Ribo M, Molina CA, Rovira A et al (2005) Safety and efficacy of intravenous tissue plasminogen activator stroke treatment in the 3- to 6-Hour window using multimodal transcranial doppler/MRI selection protocol. Stroke 36:602–606

    Article  PubMed  CAS  Google Scholar 

  29. Rosen BR, Belliveau JW, Vevea JM et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  30. Rother J (2001) CT and MRI in the diagnosis of acute stroke and their role in thrombolysis. Thromb Res 103:125–133

    Article  Google Scholar 

  31. Rother J, Schellinger PD, Gass A et al (2002) Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke <6 hours. Stroke 33:2438–2445

    Article  PubMed  CAS  Google Scholar 

  32. Saur D, Kucinski T, Grzyska U et al (2003) Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR Am J Neuroradiol 24:878–885

    PubMed  Google Scholar 

  33. Schellinger PD, Fiebach JB, Hacke W (2003) Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke 34:575–583

    Article  PubMed  Google Scholar 

  34. Schellinger PD, Thomalla G, Fiehler J et al (2007) MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke 38:2640–2645

    Article  PubMed  Google Scholar 

  35. Schlaug G, Benfield A, Baird AE et al (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537

    PubMed  CAS  Google Scholar 

  36. Sobesky J, Weber OZ, Lehnhardt FG et al (2004) Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke 35:2843–2847

    Article  PubMed  CAS  Google Scholar 

  37. Sobesky J, Zaro Weber O, Lehnhardt FG et al (2005) Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 36:980–985

    Article  PubMed  Google Scholar 

  38. Thomalla G, Schwark C, Sobesky J et al (2006) Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS and NINDS tPA trials. Stroke 37:852–858

    Article  PubMed  Google Scholar 

  39. Warach S (2002) Thrombolysis in stroke beyond three hours: Targeting patients with diffusion and perfusion MRI. Ann Neurol 51:11–13

    Article  PubMed  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Götz Thomalla erhielt Reisekostenerstattungen durch die Firma Boehringer Ingelheim, dem Hersteller von Alteplase. Martin Köhrmann erhielt Reisekostenerstattungen durch die Firma Boehringer Ingelheim. Peter D. Schellinger erhielt Reisekostenerstattungen, Vortragshonorare sowie Beraterhonorare durch die Firma Boehringer Ingelheim. P. Ringleb erhielt Vortragshonorare von Boehringer Ingelheim und Paion sowie Aufwandsentschädigungen im Rahmen klinischer Studien von Paion.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomalla, G., Ringleb, P., Köhrmann, M. et al. Patientenauswahl zur Thrombolyse mittels Perfusions- und Diffusions-MRT. Nervenarzt 80, 119–129 (2009). https://doi.org/10.1007/s00115-008-2592-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-008-2592-1

Schlüsselwörter

Keywords

Navigation