Skip to main content
Log in

Immunmodulatorische Stufentherapie der Multiplen Sklerose

Aktuelle Therapieempfehlungen (September 2006)

Escalating immunomodulatory therapy of multiple sclerosis

Update (September 2006)

  • Aktuelles
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die vorliegenden aktualisierten Empfehlungen zeigen neue Entwicklungen in Diagnostik, Immuntherapie sowie zur Versorgung von Patienten mit Multipler Sklerose (MS). Eine wichtige therapeutische Neuerung bieten monoklonale Antikörper. Ihr Einsatz in der Basistherapie ist jedoch durch ihr Nebenwirkungsprofil eingeschränkt. So ist Natalizumab zunächst nur zur Monotherapie bei Versagen einer Basisbehandlung oder bei rasch fortschreitender schubförmiger MS zugelassen. Dagegen zeigen Langzeitdaten zu den rekombinanten β-Interferonen und Glatirameracetat (Copaxone®), dass auch nach mehreren Jahren keine unerwarteten Nebenwirkungen auftreten und von einer anhaltenden therapeutischen Wirkung auszugehen ist, die bei den IFN-β-Präparaten mit der Dosis bzw. Frequenz der Therapie korreliert. Kürzlich erfolgte die Zulassung von IFN-β1b (Betaferon®) für die prophylaktische Behandlung nach dem 1. Schub (klinisch isoliertes Syndrom, CIS). Unter der Therapie mit β-Interferonen können jedoch neutralisierende Antikörper mit möglichem Wirkungsverlust auftreten. In der Therapie mit Glatirameracetat spielen Antikörper dagegen keine Rolle. Unter bzw. nach Therapie mit Mitoxantron zeigten sich in 0,2–0,4% schwere Nebenwirkungen (Kardiomyopathie, akute myeloische Leukämie). Die Plasmapherese bleibt auf individuelle Heilversuche in der Eskalationstherapie eines schweren Schubs beschränkt. Nach den revidierten McDonald-Kriterien kann die Diagnose einer MS nun schon früh nach Auftreten eines 1. Schubs (CIS) gestellt werden. Neu sind auch die Vorschläge zur optimierten Versorgung von MS-Patienten, womit ein Beschluss des europäischen Parlaments umgesetzt wurde.

Abstract

The updated recommendations presented here reflect new developments in the diagnostic work-up and immunotherapy of multiple sclerosis (MS) as well as optimization of medical care for MS patients. Monoclonal antibodies provide considerable improvement of treatment, but their use in basic therapy is restricted by their side effect profile. Thus, for the time being, natalizumab is only approved for monotherapy after basic treatment has failed or for rapidly progressive relapsing-remitting MS. In contrast, long-term data on recombinant β-interferons and glatiramer acetate (Copaxone®) show that even after several years no unexpected side effects occur and that a prolonged therapeutic effect can be assumed which correlates with the dose or frequency of treatment. Recently IFN-β1b (Betaferon®) was approved for prophylactic treatment after the first attack (clinically isolated syndrome, CIS). During treatment with β-interferons, neutralizing antibodies can emerge with possible loss of effectivity. In contrast, antibodies play no role in treatment with glatiramer acetate. During or after therapy with mitoxantrone, serious side effects (cardiomyopathy, acute myeloid leukemia) appeared in 0.2–0.4% of cases. Plasmapheresis is limited to individual curative attempts in escalating therapy of a severe attack. According to the revised McDonald criteria, the diagnosis of MS can be made as early as the occurrence of the first attack (CIS). Recommendations for optimized care of MS patients are also new, thus implementing a resolution of the European Parliament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Notes

  1. Durch die Natur der Konsensusfindung bestehen hier Abweichungen zu anderweitig publizierten Empfehlungen mancher Mitautoren dieses Reports [43]

  2. In Österreich ist dies das übliche Verfahren.

  3. Einige Zentren empfehlen, vor Therapie Liquor zu untersuchen und einzufrieren, um zum Vergleich mit späteren Untersuchungen Basisliquor zu asservieren.

  4. Glatirameracetat ist nach Auffassung der MSTKG eine den IFN-ß-Präparaten in etwa vergleichbare Basistherapie. Ohne erkennbaren Grund wurde es in den Zulassungsformulierungen der EMEA nicht erwähnt.

Literatur

  1. Multiple Sclerosis Therapy Consensus Group, MSTCG (2004) Escalating immunotherapy of multiple sclerosis–new aspects and practical application. J Neurol 251: 1329–1339

    Article  PubMed  Google Scholar 

  2. Diener HC (2003) Multiple Sklerose. Leitlinien der Deutschen Gesellschaft für Neurologie, 2. Aufl. Thieme, Stuttgart, S 210–215

  3. Henze T et al. (2004) Symptomatische Therapie der Multiplen Sklerose. Nervenarzt 75 (Suppl): S2–S39

    Google Scholar 

  4. MSTCG et al. (2006) Symptomatic treatment of multiple sclerosis. Eur Neurol 56: 78–105

    Article  PubMed  Google Scholar 

  5. MSTKG (1999) Immunmodulatorische Stufentherapie der multiplen Sklerose. Nervenarzt 70: 371–386

    Article  PubMed  Google Scholar 

  6. MSTKG (2002) Immunmodulatorische Stufentherapie der Multiplen Sklerose—Neue Aspekte und praktische Umsetzung, März 2002. Nervenarzt 73: 556–563

    Article  PubMed  Google Scholar 

  7. Goodin D et al. (2002) Disease modifying therapies in multiple sclerosis—Report of the therapeutics and technology assessment subcommittee of the American academy of neurology and the MS councel for clinical practice guidelines. Neurology 58: 169–178

    PubMed  Google Scholar 

  8. McDonald W et al. (2001) Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50: 121–127

    Article  PubMed  Google Scholar 

  9. Dalton C et al. (2002) Application of the new McDonald criteria to patients with clinically isolated syndromes suggestive o multiple sclerosis. Ann Neurol 52: 47–53

    Article  PubMed  Google Scholar 

  10. Tintore M et al. (2003) New diagnostic criteria for multiple sclerosis: application in first demyelinating episode. Neurology 60: 27–30

    Article  PubMed  Google Scholar 

  11. Polman CH, Wolinsky JS, Reingold SC (2005) Multiple sclerosis diagnostic criteria: three years later. Mult Scler 11: 5–12

    Article  PubMed  Google Scholar 

  12. Polman CH et al. (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the „McDonald Criteria“. Ann Neurol 58: 840–846

    Article  PubMed  Google Scholar 

  13. Wiendl H, Kieseier BC, Gold R et al. (2006) Revision der neuen McDonalds Kriterien zur Diagnose einer MS. Nervenarzt 77: 1235–1245

    Article  PubMed  Google Scholar 

  14. Berger T et al. (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349: 139–145

    Article  PubMed  Google Scholar 

  15. Gaertner S et al. (2004) Antibodies against glycosylated native MOG are elevated in patients with multiple sclerosis. Neurology 63: 2381–2383

    PubMed  Google Scholar 

  16. Lampasona V et al. (2004) Similar low frequency of anti-MOG IgG and IgM in MS patients and healthy subjects. Neurology 62: 2092–2094

    PubMed  Google Scholar 

  17. Rauer S et al. (2006) Antimyelin antibodies and the risk of relapse in patients with a primary demyelinating event. J Neurol Neurosurg Psychiatry 77: 739–742

    Article  PubMed  Google Scholar 

  18. Lennon VA et al. (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364: 2106–2112

    Article  PubMed  Google Scholar 

  19. Nakashima I, Fujihara K, Miyazawa I et al. (2006) Clinical and MRI features of Japanese MS patients with NMO-IgG. J Neurol Neurosurg Psychiatry 77:1073–1075

    Article  PubMed  Google Scholar 

  20. Fuhr P, Borggrefe-Chappuis A, Schindler C, Kappos L (2001) Visual and motor evoked potentials in the course of multiple sclerosis. Brain 124: 2162–2168

    Article  PubMed  Google Scholar 

  21. Kallmann B et al. (2006) Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler 12: 58–65

    Article  PubMed  Google Scholar 

  22. Kappos L, Polman CH, Freedman MS et al. (2006) Treatment with interferon beta-1b delays conversion to clinically and McDonald MS in patients with clinically isolated syndromes. Neurology 67:1242–9124

    Article  PubMed  Google Scholar 

  23. Anonymus (2006) Europäische Kommission genehmigt Aktualisierung der therapeutischen Indikation für Rebif®. http://www.serono.com/content/media/downloads/2006/20060710_de.pdf

  24. Rio J et al. (2005) Interferon beta in relapsing-remitting multiple sclerosis. An eight years experience in a specialist multiple sclerosis centre. J Neurol 252: 795–800

    Article  PubMed  Google Scholar 

  25. Kinkel RP et al. (2006) IM interferon beta-1a delays definite multiple sclerosis 5 years after a first demyelinating event. Neurology 66: 678–684

    Article  PubMed  Google Scholar 

  26. Pohl D et al. (2005) Treatment of early onset multiple sclerosis with subcutaneous interferon beta-1a. Neurology 64: 888–890

    PubMed  Google Scholar 

  27. Ghezzi A et al. (2005) Disease-modifying drugs in childhood-juvenile multiple sclerosis: results of an Italian co-operative study. Mult Scler 11: 420–424

    Article  PubMed  Google Scholar 

  28. Tenembaum SN, Segura MJ (2006) Interferon beta-1a treatment in childhood and juvenile-onset multiple sclerosis. Neurology 67: 511–3

    Article  PubMed  Google Scholar 

  29. Banwell B et al. (2006) Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. Neurology 66: 472–476

    Article  PubMed  Google Scholar 

  30. Sandberg-Wollheim M et al. (2005) Pregnancy outcomes during treatment with interferon beta-1a in patients with multiple sclerosis. Neurology 65: 802–806

    PubMed  Google Scholar 

  31. Boskovic R et al. (2005) The reproductive effects of beta interferon therapy in pregnancy: a longitudinal cohort. Neurology 65: 807–811

    PubMed  Google Scholar 

  32. Hartung HP (2005) Early treatment and dose optimisation BENEFIT and BEYOND. J Neurol 252 (Suppl 3): iii44–iii50

    Article  PubMed  Google Scholar 

  33. Clanet M et al. (2002) A randomized, double-blind, dose-comparison study of weekly interferon beta-1a in relapsing MS. Neurology 59: 1507–17

    PubMed  Google Scholar 

  34. Clanet M et al. (2004) Interferon beta-1a in relapsing multiple sclerosis: four-year extension of the European IFNbeta-1a Dose-Comparison Study. Mult Scler 10: 139–144

    Article  PubMed  Google Scholar 

  35. Freedman MS et al. (2005) Randomized study of once-weekly interferon beta-1la therapy in relapsing multiple sclerosis: three-year data from the OWIMS study. Mult Scler 11: 41–45

    Article  PubMed  Google Scholar 

  36. Vartanian T (2003) An examination of the results of the EVIDENCE, INCOMIN, and phase III studies of interferon beta products in the treatment of multiple sclerosis. Clin Ther 25: 105–118

    Article  PubMed  Google Scholar 

  37. Panitch H et al. (2002) Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial. Neurology 59: 1496–1506

    PubMed  Google Scholar 

  38. Panitch H et al. (2005) Benefits of high-dose, high-frequency interferon beta-1a in relapsing-remitting multiple sclerosis are sustained to 16 months: final comparative results of the EVIDENCE trial. J Neurol Sci 239: 67–74

    Article  PubMed  Google Scholar 

  39. Schwid SR et al. (2005) Enhanced benefit of increasing interferon beta-1a dose and frequency in relapsing multiple sclerosis: the EVIDENCE Study. Arch Neurol 62: 785–792

    Article  PubMed  Google Scholar 

  40. Durelli L et al. (2002) Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 359(9316): 1453–1460

    Article  PubMed  Google Scholar 

  41. Koch-Henriksen N, Sorensen PS, Christensen T et al. (2006) A randomized study of two interferon-beta treatments in relapsing-remitting multiple sclerosis. Neurology 66:1056–1060

    Article  PubMed  Google Scholar 

  42. Bertolotto A (2004) Neutralizing antibodies to interferon beta: implications for the management of multiple sclerosis. Curr Opin Neurol 17: 241–246

    Article  PubMed  Google Scholar 

  43. Sorensen S et al. (2005) Guidelines on use of anti-IFN-beta antibody measurementsin multiple sclerosis: report of an EFNS Task Force on IFN-beta antibodies in multiple sclerosis. Eur J Neurol 12: 817–827

    Article  PubMed  Google Scholar 

  44. Sorensen S et al. (2005) Appearance and disappearance of neutralizing antibodies during interferon beta therapy. Neurology 65: 33–39

    Article  PubMed  Google Scholar 

  45. Sorensen S et al. (2003) Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. Lancet 362: 1184–1191

    Article  PubMed  Google Scholar 

  46. Polman C et al. (2003) Neutralizingantibodies during treatment of secondary progressive MS with interferon beta-1b. Neurology 60: 37–43

    PubMed  Google Scholar 

  47. Francis GS, Rice GP, Alsop JC (2005) Interferon beta-1a in MS: results following development of neutralizing antibodies in PRISMS. Neurology 65: 48–55

    Article  PubMed  Google Scholar 

  48. Kappos L et al. (2005) Neutralizing antibodies and efficacy of interferon beta-1a: a 4-year controlled study. Neurology 65: 40–47

    Article  PubMed  Google Scholar 

  49. Hemmer B et al. (2005) Immune response to immunotherapy: the role of neutralizing antibodies to interferon beta in the treatment of multiple sclerosis. Lancet Neurol 4: 403–412

    Article  PubMed  Google Scholar 

  50. Ford CC et al. (2006) A prospective open-label study of glatiramer acetate: over a decade of continuous use in multiple sclerosis patients. Mult Scler 12: 309–320

    Article  PubMed  Google Scholar 

  51. Johnson KP et al. (2005) Neurologic consequence of delaying glatiramer acetate therapy for multiple sclerosis: 8-year data. Acta Neurol Scand 111: 42–47

    Article  PubMed  Google Scholar 

  52. Sindic CJ et al. (2005) Long-term follow up of glatiramer acetate compassionate use in Belgium. Acta Neurol Belg 105: 81–85

    PubMed  Google Scholar 

  53. Vallittu AM et al. (2005) The efficacy of glatiramer acetate in beta-interferon-intolerant MS patients. Acta Neurol Scand 112: 234–237

    Article  PubMed  Google Scholar 

  54. Flechter S et al. (2002) Comparison of glatiramer acetate (Copaxone) and interferon beta-1b (Betaferon) in multiple sclerosis patients: an open-label 2-year follow-up. J Neurol Sci 197(1–2): 51–55

    Google Scholar 

  55. Khan O et al. (2001) A prospective, open-label treatment trial to compare the effect of IFNbeta-1a (Avonex), IFNbeta-1b (Betaseron), and glatiramer acetate (Copaxone) on the relapse rate in relapsing--remitting multiple sclerosis: results after 18 months of therapy. Mult Scler 7: 349–353

    Article  PubMed  Google Scholar 

  56. Haas J, Firzlaff M (2005) Twenty-four-month comparison of immunomodulatory treatments—a retrospective open label study in 308 RRMS patients treated with beta interferons or glatiramer acetate (Copaxone). Eur J Neurol 12: 425–431

    Article  PubMed  Google Scholar 

  57. Cohen J et al. (2006) Results of a Randomized, Double-Blind, Parallel-Group Study Assessing Safety and Efficacy of 40 mg vs. 20 mg of Glatiramer Acetate on MRI-Measured Disease Activity in RRMS. Neurology 67: 185

    Article  Google Scholar 

  58. Ramtahal J, Jacob A, Das K, Boggild M (2006) Sequential maintenance treatment with glatiramer acetate after mitoxantrone is safe and can limit exposure to immunosuppression in very active, relapsing remitting multiple sclerosis. J Neurol 253: 1160–1164

    Article  PubMed  Google Scholar 

  59. Ziemssen T (2004) Neuroprotection and glatiramer acetate: the possible role in the treatment of multiple sclerosis. Adv Exp Med Biol 541: 111–134

    PubMed  Google Scholar 

  60. Aharoni R et al. (2005) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 102: 19045–19050

    Article  PubMed  Google Scholar 

  61. Khan O et al. (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 11: 646–651

    Article  PubMed  Google Scholar 

  62. Filippi M, Wolinsky JS, Comi G (2006) Effects of oral glatiramer acetate on clinical and MRI-monitored disease activity in patients with relapsing multiple sclerosis: a multicentre, double-blind, randomised, placebo-controlled study. Lancet Neurol 5: 213–220

    Article  PubMed  Google Scholar 

  63. Simmons DL (2005) Anti-adhesion therapies. Curr Opin Pharmacol 5: 398–404

    Article  PubMed  Google Scholar 

  64. Ropper AH (2006) Selective treatment of multiple sclerosis. N Engl J Med 354: 965–967

    Article  PubMed  Google Scholar 

  65. Yednock T A et al. (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356: 63–66

    Article  PubMed  Google Scholar 

  66. Theien BE et al. (2001) Discordant effects of anti-VLA-4 treatment before and after onset of relapsing experimental autoimmune encephalomyelitis. J Clin Invest 107: 995–1006

    PubMed  Google Scholar 

  67. Miller DH et al. (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348: 15–23

    Article  PubMed  Google Scholar 

  68. Rudick RA et al. (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354: 911–923

    Article  PubMed  Google Scholar 

  69. Polman CH et al. (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354: 899–910

    Article  PubMed  Google Scholar 

  70. Ransohoff RM (2005) Natalizumab and PML. Nat Neurosci 8: 1275

    Article  PubMed  Google Scholar 

  71. Yousry TA et al. (2006) Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354: 924–933

    Article  PubMed  Google Scholar 

  72. Khalili K, White MK (2006) Human demyelinating disease and the polyomavirus JCV. Mult Scler 12: 133–142

    Article  PubMed  Google Scholar 

  73. Biogen Idec GmbH (2006) Arzt-Information und Management-Leitlinien für Multiple Sklerose-Patienten, die Tysabri erhalten. http://www.biogenidec.de

  74. Europäischen Arzneimittel Agentur (2006) Fachinformation TysabriTM300 mg Konzentrat. http://www.emea.eu.int

  75. Ghalie R et al. (2002) Cardiac adverse effects associated with mitoxantrone (Novantrone) therapy in patients with MS. Neurology 59: 909–913

    PubMed  Google Scholar 

  76. Ghalie R et al. (2002) A study of therapy-related acute leukaemia after mitoxantrone therapy for multiple sclerosis. Mult Scler 8: 441–445

    Article  PubMed  Google Scholar 

  77. Scott LJ, Figgitt DP (2004) Mitoxantrone: a review of its use in multiple sclerosis. CNS Drugs 18: 379–396

    Article  PubMed  Google Scholar 

  78. O’Connor W et al. (2004) Randomized multicenter trial of natalizumab in acute MS relapses: clinical and MRI effects. Neurology 62: 2038–2043

    PubMed  Google Scholar 

  79. O’Connor W et al. (2006) A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 66: 894–900

    Article  PubMed  Google Scholar 

  80. Kappos L et al. (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355:1124–1140

    Article  PubMed  Google Scholar 

  81. Sipe JC (2005) Cladribine for multiple sclerosis: review and current status. Expert Rev Neurother 5: 721–727

    Article  PubMed  Google Scholar 

  82. Markovic-Plese S et al. (2003) Longitudinal MRI study: the effects of azathioprinein MS patients refractory to interferon beta-1b. Neurology 60: 1849–1851

    PubMed  Google Scholar 

  83. Pulicken M et al. (2005) Optimization of the safety and efficacy of interferon beta 1b and azathioprine combination therapy in multiple sclerosis. Mult Scler 11: 169–174

    Article  PubMed  Google Scholar 

  84. Calabresi A et al. (2002) An open-label trial of combination therapy with interferon beta-1a and oral methotrexate in MS. Neurology 58: 314–317

    PubMed  Google Scholar 

  85. Jeffery DR (2004) Use of combination therapy with immunomodulators and immunosuppressants in treating multiple sclerosis. Neurology 63(Suppl 6): S41–46

    PubMed  Google Scholar 

  86. Smith DR et al. (2005) A randomized blinded trial of combination therapy with cyclophosphamide in patients-with active multiple sclerosis on interferon beta. Mult Scler 11: 573–582

    Article  PubMed  Google Scholar 

  87. Jeffery DR et al. (2005) A pilot trial of combination therapy with mitoxantrone and interferon beta-1b using monthly gadolinium-enhanced magnetic resonance imaging. Mult Scler 11: 296–301

    Article  PubMed  Google Scholar 

  88. Perini, et al. Mitoxantrone versus cyclophosphamide in secondary-progressive multiple sclerosis : A comparative study. J Neurol 253:1034–1040

  89. Sorensen S (2003) Treatment of multiple sclerosis with intravenous immunoglobulin: review of clinical trials. Neurol Sci 24 (Suppl 4): S227–230

    Article  PubMed  Google Scholar 

  90. Achiron A et al. (2004) Intravenous immunoglobulin treatment following the first demyelinating event suggestive of multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Arch Neurol 61: 1515–1520

    Article  PubMed  Google Scholar 

  91. Hommes OR et al. (2004) Intravenous immunoglobulin in secondary progressive multiple sclerosis: randomised placebo-controlled trial. Lancet 364: 1149–1156

    Article  PubMed  Google Scholar 

  92. Sorensen S et al. (2004) IV immunoglobulins as add-on treatment to methylprednisolone for acute relapses in MS. Neurology 63: 2028–33

    PubMed  Google Scholar 

  93. Stangel M, Gold R (2005) Intravenous immunoglobulins in MS. Int MS J 12: 5–10

    PubMed  Google Scholar 

  94. Achiron A et al. (2004) Effect of intravenous immunoglobulin treatment on pregnancy and postpartum-related relapses in multiple sclerosis. J Neurol 251: 1133–1137

    Article  PubMed  Google Scholar 

  95. Haas J (2000) High dose IVIG in the post partum period for prevention of exacerbations in MS. Mult Scler 6 (Suppl 2): S18–20

    PubMed  Google Scholar 

  96. Hartung H et al. (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360: 2018–2025

    Article  PubMed  Google Scholar 

  97. Krapf H et al. (2005) Effect of mitoxantrone on MRI in progressive MS: results of the MIMS trial. Neurology 65: 690–695

    Article  PubMed  Google Scholar 

  98. Massacesi L et al. (2005) Efficacy of azathioprine on multiple sclerosis new brain lesions evaluated using magnetic resonance imaging. Arch Neurol 62: 1843–1847

    Article  PubMed  Google Scholar 

  99. Vermersch P, Stojkovic T, de Seze J (2005) Mycophenolate mofetil and neurological diseases. Lupus 14 (Suppl 1): s42–45

    Article  PubMed  Google Scholar 

  100. Frohman EM et al. (2004) Mycophenolate mofetil in multiple sclerosis. Clin Neuropharmacol 27: 80–83

    Article  PubMed  Google Scholar 

  101. Rowin J et al. (2006) Mycophenolate mofetil in dermatomyositis: is it safe? Neurology 66: 1245–1247

    Article  PubMed  Google Scholar 

  102. Vollmer T et al. (2004) Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363: 1607–1608

    Article  PubMed  Google Scholar 

  103. Ruprecht K et al. (2004) Plasma exchange for severe optic neuritis: treatment of 10 patients. Neurology 63: 1081–1083

    PubMed  Google Scholar 

  104. Lehmann HC et al. (2006) Plasma exchange in neuroimmunological disorders: Part 1: Rationale and treatment of inflammatory central nervous system disorders. Arch Neurol 63: 930–935

    Article  PubMed  Google Scholar 

  105. Comi G, Martino G (2006) MS treatment: New perspectives. Clin Neurol Neurosurg 108: 339–345

    Article  PubMed  Google Scholar 

  106. Tomassini V et al. (2006) Predictors of long-term clinical response to interferon beta therapy in relapsing multiple sclerosis. J Neurol 253: 287–293

    Article  PubMed  Google Scholar 

  107. Filippi M et al. (2006) EFNS guidelines on the use of neuroimaging in the management of multiple sclerosis. Eur J Neurol 13: 313–325

    Article  PubMed  Google Scholar 

  108. Simon J et al. (2006) Standardized MR Imaging Protocol for Multiple Sclerosis: Consortium of MS Centers Consensus Guidelines. AJNR Am J Neuroradiol 27: 455–461

    PubMed  Google Scholar 

  109. Freedman MS et al. (2004) Treatment optimization in multiple sclerosis. Can J Neurol Sci 31: 157–168

    PubMed  Google Scholar 

  110. Filippini G et al. (2003) Interferons in relapsing remitting multiple sclerosis: a systematic review. Lancet 361: 545–552

    Article  PubMed  Google Scholar 

  111. Aaltonen U (2003) European Parliament resolution on Petition 842/2001 concerning the effects of discriminatory treatment afforded to persons with multiple sclerosis within the European Union (2003/2173(INI)). http://www3.europarl.eu.int/omk/omnsapir.so/cre?FILE=1218je&LANGUE=DE&LEVEL=DOC&NUMINT=4–006&LEG=L5

  112. Flachenecker P, Zettl UK, Götze U et al. (2005) MS-Register in Deutschland: 1. Design und erste Ergebnisse der Pilotphase. Nervenarzt 76: 967–975

    Article  PubMed  Google Scholar 

  113. Thompson AJ (2002) Progress in neurorehabilitation in multiple sclerosis. Curr Opin Neurol 15: 267–270

    Article  PubMed  Google Scholar 

  114. Zettl UK, Tumani H (2005) Multiple sclerosis and cerebrospinal fluid. Blackwell, Oxford/UK

Download references

Interessenkonflikt

Verschiedene Autoren des Manuskripts erhielten Vortragshonorare von den folgenden Firmen, deren Präparate erwähnt wurden: Bayer, Berlex, Biogen Idec, Sanofi-Aventis, Serono, Schering GmbH, TEVA, Novartis, Glaxo-Smith Kline. Der Manuskriptbeitrag ist unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Peter Rieckmann.

Additional information

Anmerkung

Das Manuskript wurde auszugsweise auf der Homepage der Deutschen Multiple Sklerose Gesellschaft (http://www.dmsg.de) veröffentlicht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Multiple Sklerose Therapie Konsensus Gruppe (MSTKG)., Rieckmann, P. Immunmodulatorische Stufentherapie der Multiplen Sklerose. Nervenarzt 77, 1506–1518 (2006). https://doi.org/10.1007/s00115-006-2220-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-006-2220-x

Schlüsselwörter

Keywords

Navigation