Skip to main content
Log in

Monoaminerge Funktion bei depressiven Patienten

Eine Hilfe bei der Wahl der Behandlungsstrategie?

Monoaminergic function in major depression

A possibly helpful tool for choosing treatment strategy

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Über Parameter, welche eine Vorhersage des Behandlungserfolgs bei depressiven Störungen ermöglichen, ist bisher wenig bekannt. Die meisten Studien implizierten keine klinische Konsequenz für die Behandlung, da die untersuchten Prädiktoren unspezifisch waren und die Ergebnisse nicht zwischen verschiedenen Therapieoptionen unterschieden. Könnten jedoch spezifische Prädiktoren gefunden werden, die eine Vorhersage der für den einzelnen Patienten individuell optimalen Therapieoption ermöglichen, könnte die erhebliche Anzahl von Nonrespondern reduziert werden. Da die meisten antidepressiven Medikamente auf das serotonerge oder noradrenerge System wirken, stellt der Status der monoaminergen Funktion zu Behandlungsbeginn potenziell einen möglicherweise spezifischen Prädiktor eines Therapieerfolgs dar. Im Folgenden werden Verfahren zur Bestimmung monoaminerger Funktion und deren Zusammenhang zum antidepressiven Behandlungserfolg dargestellt, u. a. Monoaminabbauprodukte, neuroendokrine Stimulationstests, evozierte ereigniskorrelierte Potenziale, Genetik und Bildgebung. Insgesamt zeigt sich, dass die Befunde zu serotonergen Funktionen gegenwärtig noch nicht einheitlich sind, vor allem jedoch der Zusammenhang zwischen noradrenerger Funktion und Therapieresponse für eine Beurteilung bisher zu wenig untersucht wurde.

Summary

Little is known about the variables that might predict outcome in major depression. Most studies do not imply any clinical consequences for treatment because their predictors were nonspecific and results did not differ between the different treatment options. Finding a variable that can predict the antidepressive treatment option best suited to an individual might help in reducing the considerable number of nonresponders in the treatment of depression. As most antidepressants influence the serotonergic or noradrenergic system, monoaminergic function at the start of therapy might be a possible specific response predictor. In this review, measures that can determine monoaminergic function are presented along with their relationship to treatment response, e.g., monoaminergic metabolites, neuroendocrine challenge tests, evoked event-related potentials, genetics, and neuroimaging. In conclusion, the results of serotonergic functions are still heterogenous, but the relationship between noradrenergic function and treatment response has not been investigated in any detail yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Arias B, Catalan R, Gasto C et al. (2003) 5-HTTLPR Polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with Citalopram in a 12-weeks follow up study. J Clin Psychopharmacol 23:563–567

    Article  PubMed  Google Scholar 

  2. Attar-Levy D, Martinot JL, Blin J et al. (1999) The cortical serotonin2 receptors studied with positron-emission tomography and [18F]-setoperone during depressive illness and antidepressant treatment with clomipramine. Biol Psychiatry 45:180–186

    Article  PubMed  Google Scholar 

  3. Charney DS (1998) Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 59:11–14

    Google Scholar 

  4. Correa H, Duval F, Claude MM et al. (2001) Noradrenergic dysfunction and antidepressant treatment response. Eur Neuropsychopharmacol 11:163–168

    Article  PubMed  Google Scholar 

  5. Delgado PL, Charney DS, Price LH et al. (1990) Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry 47:411–418

    PubMed  Google Scholar 

  6. Durham LK, Webb SM, Milos PM et al. (2004) The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl) 174:525–529

    Google Scholar 

  7. Gallinat J, Bottlender R, Juckel G et al. (2000) The loudness dependency of the auditory-evoked N1/P2-component as a predictor of the acute SSRI response in depression. Psychopharmacology (Berl) 148:404–411

    Google Scholar 

  8. Goodwin GM, Green AR, Johnson P (1984) 5-HT2 receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behaviour following antidepressant treatment to mice. Br J Pharmacol 83:235–242

    PubMed  Google Scholar 

  9. Hegerl U, Gallinat J, Juckel G (2001) Event-related potentials: do they reflect central serotonergic neurotransmission and do they predict clinical response to serotonin agonists? J Affect Disord 62:93–100

    Article  PubMed  Google Scholar 

  10. Heninger GR, Delgado PL, Charney DS (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29:2–11

    PubMed  Google Scholar 

  11. Hetzel G, Moeller O, Erfurth A et al. (2004) The impact of the selective monoamine reuptake inhibitors reboxetine and citalopram on visually-evoked event-related potentials in depressed patients. Pharmacopsychiatry 37:200–205

    Article  PubMed  Google Scholar 

  12. Himani A, Tandon OP, Bhatia MS (1999) A study of P300-event related evoked potential in the patients of major depression. Indian J Physiol Pharmacol 43:367–372

    PubMed  Google Scholar 

  13. Ito K, Yoshida K, Sato K et al. (2002) A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatry Res 111:235–239

    Article  PubMed  Google Scholar 

  14. Johnston TG, Kelly CB, Stevenson MR et al. (1999) Plasma norepinephrine and prediction of outcome in major depressive disorder. Biol Psychiatry 46:1253–1258

    Article  PubMed  Google Scholar 

  15. Juckel G, Mavrogiorgou P, Bredemeier S et al. (2004) Loudness dependence of primary auditory-cortex-evoked activity as predictor of therapeutic outcome to prophylactic lithium treatment in affective disorders—a retrospective study. Pharmacopsychiatry 37:46–51

    PubMed  Google Scholar 

  16. Kapitany T,Schindl M, Schindler SD (1999) The citalopram challenge test in patients with major depression and in healthy controls. Psychiatry Res 88:75–88

    Article  PubMed  Google Scholar 

  17. Kegeles LS, Malone KM, Slifstein M et al. (2003) Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders. Am J Psychiatry 160:76–82

    Article  PubMed  Google Scholar 

  18. Klimke A, Larisch R, Janz A et al. (1999) Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT. Psychiatry Res 90:91–101

    PubMed  Google Scholar 

  19. Kugaya A, Sanacora G, Staley JK et al. (2004) Brain serotonin transporter availability predicts treatment response to selective serotonin reuptake inhibitors. Biol Psychiatry 56:497–502

    Article  PubMed  Google Scholar 

  20. Laakmann G, Schoen HW, Blaschke D et al. (1985) Dose-dependend growth hormone, prolactin and cortisol stimulation after i. v.-administration of desipramine. Psychoneuroendocinology 10:83–93

    Article  Google Scholar 

  21. Leonard BE (1997) Noradrenaline in basic models of depression. Eur Neuropsychopharmacol 7:11–16

    Article  Google Scholar 

  22. Lesch KP, Laux G, Schulte HM et al. (1988) Pre- and postsynaptic alpha-adrenergic effects of clonidine in major depressive disorder. Pharmacopsychiatry 21:430–431

    PubMed  Google Scholar 

  23. Linka T, Muller BW, Bender S et al. (2004) The intensity dependence of the auditory evoked N1 component as a predictor of response to citalopram treatment in patients with major depression. Neurosci Lett 367:375–378

    Article  PubMed  Google Scholar 

  24. Lucini V, Lucca A, Catalano M et al. (1996) Predictive value of tryptophan/large neutral amino acids ratio to antidepressant response. J Affect Disord 36:129–133

    Article  PubMed  Google Scholar 

  25. Meltzer CC, Price JC, Mathis CA et al. (2004) Serotonin 1A receptor binding and treatment response in late-life depression. Neuropsychopharmacology 29:2258–2265

    Article  PubMed  Google Scholar 

  26. Meyer JH, Kapur S, Eisfeld B et al. (2001) The effect of paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging study. Am J Psychiatry 158:78–85

    Article  PubMed  Google Scholar 

  27. Meyer JH, Wilson AA, Ginovart N et al. (2001) Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [(11)C]DASB PET imaging study. Am J Psychiatry 158:1843–1849

    Article  PubMed  Google Scholar 

  28. Miller HL, Ekstrom RD, Mason GA et al. (2001) Noradrenergic function and clinical outcome in antidepressant pharmacotherapy. Neuropsychopharmacology 24:617–623

    Article  PubMed  Google Scholar 

  29. Mischoulon D, Dougherty DD, Bottonari KA et al. (2002) An open pilot study of nefazodone in depression with anger attacks: relationship between clinical response and receptor binding. Psychiatry Res 116:151–161

    PubMed  Google Scholar 

  30. Möller HJ (2004) Therapieresistenz auf Antidepressiva. Definition, Häufigkeit, Prädiktoren und Interventions-Möglichkeiten. Nervenarzt 75:499–515

    Article  PubMed  Google Scholar 

  31. Moeller O, Hetzel G, Michael N et al. (2005) Basal prolactin values correlate with response to reboxetine treatment in major depression, but not with response to citalopram. Neuropsychobiology 51:67–71

    Article  PubMed  Google Scholar 

  32. Moeller O, Hetzel G, Rothermundt M et al. (2003) Oral citalopram and reboxetine challenge tests before and after selective antidepressant treatment. J Psychiatr Res 37:261–262

    Article  PubMed  Google Scholar 

  33. Moller SE (1990) 5-HT uptake inhibitors and tricyclic antidepressants: relation between tryptophan availability and clinical response in depressed patients. Eur Neuropsychopharmacol 1:41–44

    Article  PubMed  Google Scholar 

  34. Moresco RM, Colombo C, Fazio F et al. (2000) Effects of fluvoxamine treatment on the in vivo binding of [F-18]FESP in drug naive depressed patients: a PET study. Neuroimage 12:452–465

    Article  PubMed  Google Scholar 

  35. New AS, Woo-Ming A, Mitropoulou V et al. (1999) Serotonin and the prediction of response time to fluoxetine in patients with mild depression. Psychiatry Res 88:89–93

    Article  PubMed  Google Scholar 

  36. Newman ME, Shapira B, Lerer B (1998) Evaluation of central serotonergic function in affective and related disorders by the fenfluramine challenge test: a critical review. Int J Neuropsychopharmacol 1:49–69

    Article  PubMed  Google Scholar 

  37. O’Keane V, Dinan TG (1991) Prolactin and cortisol responses to d-fenfluramin in major depression: evidence for diminished responsivity of central serotonergic function. Am J Psychiatry 148:1009–1015

    PubMed  Google Scholar 

  38. Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40:288–295

    PubMed  Google Scholar 

  39. Paige SR, Fitzpatrick DF, Kline JP et al. (1994) Event-related potential amplitude/intensity slopes predict response to antidepressants. Neuropsychobiology 30:197–201

    PubMed  Google Scholar 

  40. Paige SR, Hendricks SE, Fitzpatrick DF et al. (1995) Amplitude/intensity functions of auditory event-related potentials predict responsiveness to bupropion in major depressive disorder. Psychopharmacol Bull 31:243–248

    PubMed  Google Scholar 

  41. Perez V, Bel N, Celada P et al. (1998) Relationship between blood serotonergic variables, melancholic traits, and response to antidepressant treatments. J Clin Psychopharmacol 18:222–230

    Article  PubMed  Google Scholar 

  42. Pollock BG, Ferrell RE, Mulsant BH et al. (2000) Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 23:587–590

    Article  PubMed  Google Scholar 

  43. Porter RJ, Mulder RT, Joyce PR (2003) Baseline prolactin and L-tryptophan availability predict response to antidepressant treatment in major depression. Psychopharmacology (Berl) 165:216–221

    Google Scholar 

  44. Sargent PA, Kjaer KH, Bench CJ et al. (2000) Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 57:174–180

    Google Scholar 

  45. Sato K, Yoshida K, Takahashi H et al. (2002) Association between -1438G/A promoter polymorphism in the 5-HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology 46:136–140

    Google Scholar 

  46. Schatzberg AF (1998) Noradrenergic versus serotonergic antidepressants: predictors of treatment response. J Clin Psychiatry 59:15–18

    Google Scholar 

  47. Schule C, Baghai T, Schmidbauer S et al. (2004) Reboxetine acutely stimulates cortisol, ACTH, growth hormone and prolactin secretion in healthy male subjects. Psychoneuroendocrinology 29:185–200

    Article  PubMed  Google Scholar 

  48. Seretti A, Zanardi R, Rossini D et al. (2001) Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 6:586–592

    Google Scholar 

  49. Shinkai K, Yoshimura R, Ueda N et al. (2004) Associations between baseline plasma MHPG (3-methoxy-4-hydroxyphenylglycol) levels and clinical responses with respect to milnacipran versus paroxetine treatment. J Clin Psychopharmacol 24:11–17

    Article  PubMed  Google Scholar 

  50. Smeraldi E, Zanardi R, Benedetti F et al. (1998) Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 3:508–511

    Article  PubMed  Google Scholar 

  51. Szegedi A, Rujescu D, Tadic A et al. (2005) The catechol-O-methyltransferase Val(108/158)Met polymorphism affects short-termtreatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J 5:49–53

    Article  PubMed  Google Scholar 

  52. Ueda N, Yoshimura R, Shinkai K et al. (2002) Plasma levels of catecholamine metabolites predict the response to sulpiride or fluvoxamine in major depression. Pharmacopsychiatry 35:175–181

    Article  PubMed  Google Scholar 

  53. Vandoolaeghe E, van Hunsel F, Nuyten D et al. (1998) Auditory event related potentials in major depression: prolonged P300 latency and increased P200 amplitude. J Affect Disord 48:105–113

    Article  PubMed  Google Scholar 

  54. Weizman A, Weizman R (2000) Serotonin transporter polymorphism and response to SSRIs in major depression and relevance to anxiety disorders and substance abuse. Pharmacogenomics 1:335–341

    Article  PubMed  Google Scholar 

  55. Wilson AA, Johnson DP, Mozley D et al. (2003) Synthesis and in vivo evaluation of novel radiotracers for the in vivo imaging of the norepinephrine transporter. Nucl Med Biol 30:85–92

    Article  PubMed  Google Scholar 

  56. Yatham LN, Liddle PF, Dennie J et al. (1999) Decrease in brain serotonin 2 receptor binding in patients with major depression following desipramine treatment: a positron emission tomography study with fluorine-18-labeled setoperone. Arch Gen Psychiatry 56:705–711

    Google Scholar 

  57. Yoshida K, Takahashi H, Higuchi H et al. (2004) Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry 161:1575–1580

    Google Scholar 

  58. Yu YW, Tsai SJ, Chen TJ et al. (2002) Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 7:1115–1119

    Google Scholar 

  59. Zill P, Baghai TC, Engel R et al. (2003) Beta-1-adrenergic receptor gene in major depression: influence on antidepressant treatment response. Am J Med Genet 120:85–89

    Article  Google Scholar 

  60. Zill P, Baghai TC, Zwanzger P et al. (2000) Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 11:1893–1897

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Moeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeller, O., Norra, C. & Gründer, G. Monoaminerge Funktion bei depressiven Patienten. Nervenarzt 77, 800–808 (2006). https://doi.org/10.1007/s00115-005-2042-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-005-2042-2

Schlüsselwörter

Keywords

Navigation