Skip to main content
Log in

Identifikation von Risikogenen für Alkoholabhängigkeit

Das NMDA-Rezeptor-System

The NMDA receptor system: genetic risk factor for alcoholism

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Alkoholabhängigkeit ist eine der häufigsten Suchterkrankungen, die zum Teil durch erbliche Eigenschaften verursacht wird. Dabei tragen mehrere Gene zur Erkrankung bei, wobei jedes beteiligte Gen nur geringen Effekt auf den Phänotyp hat. Neben der Wirkung auf andere Signaltransduktionsmechanismen inhibiert Alkohol spezifisch die NMDA-Signal-Transduktionskaskade, die den exzitatorischen Effekt von Glutamat im Gehirn vermittelt. Die alkoholsensitiven Zielmoleküle umfassen die NMDA-Rezeptoren, nachfolgende Signalmoleküle des glutamatergen Systems, Glutamattransporter und assoziierte regulatorische Proteine. Adaptive Prozesse des glutamatergen Systems während chronischen Alkoholkonsums könnten eine große Rolle für die Entwicklung späterer Entzugserscheinungen spielen. Studien an Kandidatengenen, sowohl Assoziationsstudien als auch tierexperimentelle Studien, sind geeignet, die oligogenen Effekte nachzuweisen und ein wertvolles Instrument für die Erforschung der Alkoholabhängigkeit.

Summary

Alcohol dependence is one of the most common addictive diseases and known to be in part genetically transmitted, based on an oligogenic background in which each gene involved contributes only little to the resulting phenotype. Besides influencing other signal transduction mechanisms, alcohol specifically inhibits the NMDA signaling cascade, which mediates the excitatory effects of glutamate in the brain. Target molecules, sensitive to ethanol, include the NMDA receptors as well as downstream molecules of the glutamatergic system, glutamate transporters, and associated regulatory proteins. Adaptive processes of the glutamatergic system during chronic alcohol consumption may play a major role for later development of reward symptoms. Candidate gene studies, including association studies and animal models, are powerful and sensitive for detecting oligogenic effects and thus imortant to alcoholism research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Allgaier C, Scheibler P, Muller D et al. (1999) NMDA receptor characterization and subunit expression in rat cultured mesencephalic neurones. Br J Pharmacol 126:121–130

    Article  CAS  PubMed  Google Scholar 

  2. Allgaier C, Franke H, Sobottka H et al. (2000) Acamprosate inhibits Ca2+ influx mediated by NMDA receptors and voltage- sensitive Ca2+ channels in cultured rat mesencephalic neurones. Naunyn Schmiedebergs Arch Pharmacol 362:440–443

    Article  CAS  PubMed  Google Scholar 

  3. Begleiter H, Porjesz B, Bihari B et al. (1984) Event-related brain potentials in boys at risk for alcoholism. Science 225:1493–1496

    CAS  PubMed  Google Scholar 

  4. Benke D, Wenzel A, Scheuer L et al. (1995) Immunobiochemical characterization of the NMDA-receptor subunit NR1 in the developing and adult rat brain. J Recept Signal Transduct Res 15:393–411

    CAS  PubMed  Google Scholar 

  5. Benquet P, Gee CE, Gerber U (2002) Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 22:9679–9686

    CAS  PubMed  Google Scholar 

  6. Boehm SL, Peden L, Chang R et al. (2003) Deletion of the fyn-kinase gene alters behavioral sensitivity to ethanol. Alcohol Clin Exp Res 27:1033–1040

    Article  CAS  PubMed  Google Scholar 

  7. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  CAS  PubMed  Google Scholar 

  8. Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25:571–577

    Article  CAS  PubMed  Google Scholar 

  9. Cheung HH, Gurd JW (2001) Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases. J Neurochem 78:524–534

    Article  CAS  PubMed  Google Scholar 

  10. Collingridge GL, Lester RA (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41:143–210

    CAS  PubMed  Google Scholar 

  11. Cowen MS, Schumann G, Yagi T et al. (2003) Role of Fyn tyrosine kinase in ethanol consumption by mice. Alcohol Clin Exp Res 27:1213–1219

    Article  CAS  PubMed  Google Scholar 

  12. Davis KM, Wu JY (2001) Role of glutamatergic and GABAergic systems in alcoholism. J Biomed Sci 8:7–19

    Article  CAS  PubMed  Google Scholar 

  13. Dingledine R, Borges K, Bowie D et al. (1999) The glutamate receptor ion channels. Pharmacol Rev 51:8–47

    Google Scholar 

  14. Dodd PR, Beckmann AM, Davidson MS et al. (2000) Glutamate-mediated transmission, alcohol, and alcoholism. Neurochem Int 37:509–533

    Article  CAS  PubMed  Google Scholar 

  15. Dunah AW, Yasuda RP, Luo J et al. (1999) Biochemical studies of the structure and function of the N-methyl-D-aspartate subtype of glutamate receptors. Mol Neurobiol 19:151–179

    Article  CAS  PubMed  Google Scholar 

  16. Enoch MA, Goldman D (1999) Genetics of alcoholism and substance abuse. Psychiatr Clin North Am 22:289–299

    CAS  PubMed  Google Scholar 

  17. Fadda F, Rossetti ZL (1998) Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog Neurobiol 56:385–431

    Article  CAS  PubMed  Google Scholar 

  18. Fink K, Gothert M (1996) Both ethanol and ifenprodil inhibit NMDA-evoked release of various neurotransmitters at different, yet proportional potency: potential relation to NMDA receptor subunit composition. Naunyn Schmiedebergs Arch Pharmacol 354:312–319

    Article  CAS  PubMed  Google Scholar 

  19. Gulya K, Grant KA, Valverius P et al. (1991) Brain regional specificity and time course of changes in the NMDA receptor-ionophore complex during ethanol withdrawal. Brain Res 547:129–134

    Article  CAS  PubMed  Google Scholar 

  20. Guo H, Lai L, Butchbach ME et al. (2003) Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 12:2519–2532

    Article  CAS  PubMed  Google Scholar 

  21. Heidinger V, Manzerra P, Wang XQ et al. (2002) Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 22:5452–5461

    CAS  PubMed  Google Scholar 

  22. Heinz A, Mann K (2001) Neurobiologie der Alkoholabhängigkeit. Dtsch Ärztebl 36:2279–2285

    Google Scholar 

  23. Heinz A, Reimold M, Hermann D et al. (2005) Brain reward system alterations in alcoholism—an in vivo [11C] Carfentanil PET study. Lancet (submitted)

  24. Hisatsune C, Umemori H, Mishina M et al. (1999) Phosphorylation-dependent interaction of the N-methyl-D-aspartate receptor epsilon 2 subunit with phosphatidylinositol 3-kinase. Genes Cells 4:657–666

    Article  CAS  PubMed  Google Scholar 

  25. Hrubec Z, Omenn GS (1981) Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol Clin Exp Res 5:207–215

    CAS  PubMed  Google Scholar 

  26. Hundt W, Zimmermann U, Pottig M et al. (2001) The combined dexamethasone-suppression/CRH-stimulation test in alcoholics during and after acute withdrawal. Alcohol Clin Exp Res 25:687–691

    Article  CAS  PubMed  Google Scholar 

  27. Husi H, Ward MA, Choudhary JS et al. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669

    Article  CAS  PubMed  Google Scholar 

  28. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  CAS  PubMed  Google Scholar 

  29. Johnson GC, Esposito L, Barratt BJ et al. (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29:233–237

    Article  CAS  PubMed  Google Scholar 

  30. Kendler KS, Heath AC, Neale MC et al. (1992) A population-based twin study of alcoholism in women. JAMA 268:1877–1882

    Article  CAS  PubMed  Google Scholar 

  31. Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24:211–215

    Article  CAS  PubMed  Google Scholar 

  32. Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837

    CAS  PubMed  Google Scholar 

  33. Kruger H, Wilce PA, Shanley BC (1993) Ethanol and protein kinase C in rat brain. Neurochem Int 22:575–581

    Article  CAS  PubMed  Google Scholar 

  34. Kumari M, Ticku MK (2000) Regulation of NMDA receptors by ethanol. Prog Drug Res 54:152–189

    CAS  PubMed  Google Scholar 

  35. Littleton JM, Lovinger D, Liljequist S et al. (2001) Role of polyamines and NMDA receptors in ethanol dependence and withdrawal. Alcohol Clin Exp Res 25:132S–136S

    Article  CAS  PubMed  Google Scholar 

  36. Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724

    CAS  PubMed  Google Scholar 

  37. Malinowska B, Napiorkowska-Pawlak D, Pawlak R et al. (1999) Ifenprodil influences changes in mouse behaviour related to acute and chronic ethanol administration. Eur J Pharmacol 377:13–19

    Article  CAS  PubMed  Google Scholar 

  38. Mann K, Mundle G, Strayle M et al. (1995) Neuroimaging in alcoholism: CT and MRI results and clinical correlates. J Neural Transm Gen Sect 99:145–155

    Article  CAS  PubMed  Google Scholar 

  39. Mansuy IM, Bujard H (2000) Tetracycline-regulated gene expression in the brain. Curr Opin Neurobiol 10:593–596

    Article  CAS  PubMed  Google Scholar 

  40. Masood K, Wu C, Brauneis U et al. (1994) Differential ethanol sensitivity of recombinant N-methyl-D-aspartate receptor subunits. Mol Pharmacol 45:324–329

    CAS  PubMed  Google Scholar 

  41. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  CAS  PubMed  Google Scholar 

  42. Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276

    Article  CAS  PubMed  Google Scholar 

  43. McGinnis JM, Foege WH (1993) Actual causes of death in the United States. JAMA 270:2207–2212

    Article  CAS  PubMed  Google Scholar 

  44. McGue M (1999) The behavioral genetics of alcoholism. Curr Dir Psychol Sci 8:109–115

    Article  Google Scholar 

  45. McGue M, Pickens RW, Svikis DS (1992) Sex and age effects on the inheritance of alcohol problems: a twin study. J Abnorm Psychol 101:3–17

    Article  CAS  PubMed  Google Scholar 

  46. Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54:369–415

    Article  CAS  PubMed  Google Scholar 

  47. Miyakawa T, Yagi T, Kitazawa H et al. (1997) Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Science 278:698–701

    Article  CAS  PubMed  Google Scholar 

  48. Nille U (2000) Zur Neurobiologie des Alkoholismus. Abhängigkeiten 3:27–31

    Google Scholar 

  49. Pandey SC (1998) Neuronal signaling systems and ethanol dependence. Mol Neurobiol 17:1–15

    CAS  PubMed  Google Scholar 

  50. Peoples RW, Stewart RR (2000) Alcohols inhibit N-methyl-D-aspartate receptors via a site exposed to the extracellular environment. Neuropharmacology 39:1681–1691

    Article  CAS  PubMed  Google Scholar 

  51. Perkinton MS, Ip JK, Wood GL et al. (2002) Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem 80:239–254

    Article  CAS  PubMed  Google Scholar 

  52. Pickens RW, Svikis DS, McGue M et al. (1991) Heterogeneity in the inheritance of alcoholism. A study of male and female twins. Arch Gen Psychiatry 48:19–28

    CAS  PubMed  Google Scholar 

  53. Preuss UW, Koller G, Bahlmann M et al. (2002) No association between metabotropic glutamate receptors 7 and 8 (mGlur7 and mGlur8) gene polymorphisms and withdrawal seizures and delirium tremens in alcohol-dependent individuals. Alcohol 37:174–178

    CAS  Google Scholar 

  54. Rammes G, Mahal B, Putzke J et al. (2001) The anti-craving compound acamprosate acts as a weak NMDA-receptor antagonist but modulates NMDA-receptor subunit expression similar to memantine and MK-801. Neuropharmacology 40:749–760

    Article  CAS  PubMed  Google Scholar 

  55. Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405:847–856

    Article  CAS  PubMed  Google Scholar 

  56. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    CAS  PubMed  Google Scholar 

  57. Roivainen R, Hundle B, Messing RO (1994) Proteinkinase C and adaption to ethanol. In: Jansson B, Jornvall H, Rydberg U et al. (eds) Toward a molecular basis of alcohol use and abuse. Birkhäuser, Basel, pp 29–38

  58. Saam C, Treutlein J, Schumann G (2004) Molekularbiologische Grundlagen. In: Riederer P, Laux G (eds) Neuropsychopharmaka, 2nd edn. Springer, Berlin Heidelberg New York (in press)

  59. Sander T, Ostapowicz A, Samochowiec J et al. (2000) Genetic variation of the glutamate transporter EAAT2 gene and vulnerability to alcohol dependence. Psychiatr Genet 10:103–107

    CAS  PubMed  Google Scholar 

  60. Sass H, Soyka M, Mann K et al. (1996) Relapse prevention by acamprosate. Results from a placebo-controlled study on alcohol dependence. Arch Gen Psychiatry 53:673–680

    CAS  PubMed  Google Scholar 

  61. Schuckit MA (1994) A clinical model of genetic influences in alcohol dependence. J Stud Alcohol 55:5–17

    CAS  PubMed  Google Scholar 

  62. Schuckit MA (1994) Low level of response to alcohol as a predictor of future alcoholism. Am J Psychiatry 151:184–189

    CAS  PubMed  Google Scholar 

  63. Schuckit MA, Smith TL, Tipp JE (1997) The Self-Rating of Effects of alcohol (SRE) form as a retrospective measure of the risk for alcoholism. Addiction 92:979–988

    Article  CAS  PubMed  Google Scholar 

  64. Schumann G, Rujescu D, Szegedi A et al. (2003) No association of alcohol dependence with a NMDA-receptor 2B gene variant. Mol Psychiatry 8:11–12

    Article  CAS  PubMed  Google Scholar 

  65. Schumann G, Spanagel R, Mann K (2003) Candidate genes for alcohol dependence: animal studies. Alcohol Clin Exp Res 27:880–888

    PubMed  Google Scholar 

  66. Schumann G, Rujescu D, Kissling C et al. (2003) Analysis of genetic variations of protein tyrosine kinase fyn and their association with alcohol dependence in two independent cohorts. Biol Psychiatry 54:1422–1426

    Article  CAS  PubMed  Google Scholar 

  67. Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298:776–780

    Article  CAS  PubMed  Google Scholar 

  68. Simson PE, Criswell HE, Johnson KB et al. (1991) Ethanol inhibits NMDA-evoked electrophysiological activity in vivo. J Pharmacol Exp Ther 257:225–231

    CAS  PubMed  Google Scholar 

  69. Slater SJ, Cox KJA, Lombardi JV et al. (1993) Inhibition of protein kinase C by alcohols and anaesthetics. Nature 364:82–84

    Article  CAS  PubMed  Google Scholar 

  70. Spanagel R, Putzke J, Stefferl A et al. (1996) Acamprosate and alcohol: II. Effects on alcohol withdrawal in the rat. Eur J Pharmacol 305:45–50

    Article  CAS  PubMed  Google Scholar 

  71. Spanagel R, Zieglgansberger W (1997) Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes. Trends Pharmacol Sci 18:54–59

    Article  CAS  PubMed  Google Scholar 

  72. Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22:521–527

    Article  CAS  PubMed  Google Scholar 

  73. Spanagel R, Bienkowski P (2002) Glutamatergic mechanisms in alcohol dependence and addiction. In: Lodge D, Danysz W, Parsons FP (eds) Therapeutic potential of ionotropic glutamate receptor antagonists and modulators. Graham Publishing, Johnson City, pp 375–403

  74. Spanagel R, Sigmund SV, Cowen M et al. (2002) The neuronal nitric oxide synthase (nNOS) gene is critically involved in neurobehavioral effects of alcohol. J Neurosci 22:8676–8683

    CAS  PubMed  Google Scholar 

  75. Spanagel R, Pendyala G, Abarca C et al. (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11:35–42

    Article  CAS  PubMed  Google Scholar 

  76. Stork O, Kojima N, Stork S et al. (2002) Resistance to alcohol withdrawal-induced behaviour in Fyn transgenic mice and its reversal by ifenprodil. Brain Res Mol Brain Res 105:126–135

    Article  CAS  PubMed  Google Scholar 

  77. Thiele TE, Willis B, Stadler J et al. (2000) High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase A-mutant mice. J Neurosci 20:RC75–RC78

    CAS  PubMed  Google Scholar 

  78. Tsai G, Gastfriend DR, Coyle JT (1995) The glutamatergic basis of human alcoholism. Am J Psychiatry 152:332–340

    CAS  PubMed  Google Scholar 

  79. Tsai G, Coyle JT (1998) The role of glutamatergic neurotransmission in the pathophysiology of alcoholism. Annu Rev Med 49:173–184

    Article  CAS  PubMed  Google Scholar 

  80. Wellek S, Schumann G (2004) Statistical confirmation of negative results of association studies in genetic epidemiology. Am J Med Genet 128B:126–130

    Article  Google Scholar 

  81. Wernicke C, Samochowiec J, Schmidt LG et al. (2003) Polymorphisms in the N-methyl-D-aspartate receptor 1 and 2B subunits are associated with alcoholism-related traits. Biol Psychiatry 54:922–928

    Article  CAS  PubMed  Google Scholar 

  82. Williams K, Zappia AM, Pritchett DB et al. (1994) Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits. Mim Text ol Pharmacol 45:803–809

    CAS  Google Scholar 

  83. Wirkner K, Poelchen W, Koles L et al. (1999) Ethanol-induced inhibition of NMDA receptor channels. Neurochem Int 35:153–162

    Article  CAS  PubMed  Google Scholar 

  84. Yaka R, Tang KC, Camarini R et al. (2003) Fyn kinase and NR2B-containing NMDA receptors regulate acute ethanol sensitivity but not ethanol intake or conditioned reward. Alcohol Clin Exp Res 27:1736–1742

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagungen

Diese Arbeit wurde unterstützt durch den Suchtforschungsverbund Baden Württemberg an GS und KM (FKZ 01 EB 0410) sowie das Nationale Genomforschungsnetz II (NGFN II) an GS, KM und AH.

Interessenkonflikt

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumann, G., Saam, C., Heinz, A. et al. Identifikation von Risikogenen für Alkoholabhängigkeit . Nervenarzt 76, 1355–1362 (2005). https://doi.org/10.1007/s00115-005-1917-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-005-1917-6

Schlüsselwörter

Keywords

Navigation