Skip to main content
Log in

Das endogene Cannabinoidsystem

Therapeutische Implikationen der Cannabinoide bei neurologisch-psychiatrischen Erkrankungen

The endogenous cannabinoid system

Therapeutic implications for neurologic and psychiatric disorders

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Seit ca. 5000 Jahren werden Medikamente auf Cannabisbasis genutzt. In den vergangenen Jahren ist ein starkes Interesse an der medizinischen Nutzung von Cannabinoiden entstanden. Grundlage dafür sind die Erkenntnisse, dass Cannabinoide über spezifische Rezeptoren (CB1 und CB2) wirken. Die CB1-Rezeptoren werden in spezifischen Hirnarealen (u. a. Zerebellum, Basalganglien und Hippokampus) und die CB2-Rezeptoren auf immunkompetenten Zellen exprimiert. Außerdem wurden körpereigene Liganden der Cannabinoidrezeptoren entdeckt (z. B. Anandamid). Eine Vielzahl physiologischer Prozesse wird u. a. über die Cannabinoidrezeptoren moduliert (Steuerung der Motorik, Gedächtnisfunktionen, Appetit, Schmerzen etc.). Aufgrund dieser neurobiologischen/pharmakologischen Erkenntnisse ergeben sich eine Reihe von möglichen Bereichen für die Anwendung von natürlichen und synthetischen Cannabinoiden. Bereits heutzutage werden Cannabinoide bei verschiedenen Erkrankungen eingesetzt, wobei die Datenlage unterschiedlich ist. Gesicherte Erkenntnisse liegen für die Behandlung von therapierefraktärer Übelkeit und Erbrechen bei Chemotherapie sowie beim HIV-wasting-Syndrom vor. Für die Wirksamkeit bei anderen Störungen wie Multiple Sklerose, bestimmten Formen der Bewegungsstörungen (Gilles-de-la-Tourette-Syndrom), Schmerzen etc. gibt es Hinweise. Die neuen Erkenntnisse über das Cannabinoidsystem und seine endogenen Liganden erklären auch die möglichen unerwünschten Wirkungen von Cannabinoiden.

Summary

For about 5,000 years, cannabis has been used as a therapeutic agent. There has been growing interest in the medical use of cannabinoids. This is based on the discovery that cannabinoids act with specific receptors (CB1 and CB2). CB1 receptors are located in specific brain areas (e.g. cerebellum, basal ganglia, and hippocampus) and CB2 receptors on cells of the immune system. Endogenous ligands of the cannabinoid receptors were also discovered (e.g. anandamids). Many physiologic processes are modulated by the two subtypes of cannabinoid receptor: motor functions, memory, appetite, and pain. These innovative neurobiologic/pharmacologic findings could possibly lead to the use of synthetic and natural cannabinoids as therapeutic agents in various areas. Until now, cannabinoids were used as antiemetic agents in chemotherapy-induced emesis and in patients with HIV-wasting syndrome. Evidence suggests that cannabinoids may prove useful in some other diseases, e.g. movement disorders such as Gilles de la Tourette’s syndrome, multiple sclerosis, and pain. These new findings also explain the acute adverse effects following cannabis use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 58:315–348

    Article  CAS  PubMed  Google Scholar 

  2. Ameri A, Wilhelm A, Simmet T (1999) Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices. Br J Pharmacol 126:1831–1839

    Google Scholar 

  3. Baker D, Pryce G, Croxford JL et al. (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404:84–87

    Google Scholar 

  4. Baker D, Pryce G, Croxford JL et al. (2001) Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J 15:300–302

    Google Scholar 

  5. Berding G, Muller-Vahl K, Schneider U et al. (2004) [(123)I]AM281 single-photon emission computed tomography imaging of central cannabinoid CB(1) receptors before and after Delta(9)-tetrahydrocannabinol therapy and whole-body scanning for assessment of radiation dose in tourette patients. Biol Psychiatry 55:904–915

    Google Scholar 

  6. Breivogel CS, Griffin G, Di Marzo V et al. (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60:155–163

    CAS  PubMed  Google Scholar 

  7. Bruera E (1992) Clinical mangement of anorexia and chachexia in patients with advanced cancer. Oncology 49:35–42

    Google Scholar 

  8. Burstein SH (2000) Ajulemic acid (CT3): a potent analog of the acid metabolites of THC. Curr Pharm Des 6:1339–1345

    CAS  PubMed  Google Scholar 

  9. Burstein SH, Karst M, Schneider U et al. (2004) Ajulemic acid: a novel cannabinoid produces analgesia without a „high“. Life Sci 75:1513–1522

    Google Scholar 

  10. Bundeszentrale für gesundheitliche Aufklärung (BzgA) (2001) Die Drogenaffinität Jugendlicher in der Bundesrepublik Deutschland. BzgA, Köln

  11. Cabral GA, Toney DM, Fischer-Stenger K et al. (1995) Anandamide inhibits macrophage-mediated killing of tumor necrosis factor-sensitive cells. Life Sci 56:2065–2072

    Google Scholar 

  12. Cabral GA, Vasquez R (1991) Effects of marijuana on macrophage function. Adv Exp Med Biol 288:93–105

    Google Scholar 

  13. Campbell FA, Tramer MR, Carroll D et al. (2001) Are cannabinoids an effective and safe treatment option in the management of pain? A qualitative systematic review. BMJ 323:13–16

    Article  CAS  PubMed  Google Scholar 

  14. Chaytor A, Martin P, Evans W et al. (1999) The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication. J Physiol 520(Pt 2):539–550

    Google Scholar 

  15. Christopoulos A, Coles P, Lay L et al. (2001) Pharmacological analysis of cannabinoid receptor activity in the rat vas deferens. Br J Pharmacol 132:1281–1291

    Google Scholar 

  16. Clifford DB (1983) Tetrahydrocannabinol for tremor in multiple sclerosis. Ann Neurol 13:669–671

    CAS  PubMed  Google Scholar 

  17. Consroe P, Benedito MA, Leite JR et al. (1982) Effects of cannabidiol on behavioral seizures caused by convulsant drugs or current in mice. Eur J Pharmacol 83:293–298

    Google Scholar 

  18. Consroe P, Laguna J, Allender J et al. (1991) Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav 40:701–708

    Google Scholar 

  19. Consroe P, Sandyk R, Snider SR (1986) Open label evaluation of cannabidiol in dystonic movement disorders. Int J Neurosci 30:277–282

    Google Scholar 

  20. Cota D, Marsicano G, Lutz B et al. (2003) Endogenous cannabinoid system as a modulator of food intake. Int J Obes Relat Metab Disord 27:289–301

    Google Scholar 

  21. Cunha JM, Carlini EA, Pereira AE et al. (1980) Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21:175–185

    Google Scholar 

  22. Di Marzo V, Blumberg PM, Szallasi A (2002) Endovanilloid signaling in pain. Curr Opin Neurobiol 12:372–379

    Article  PubMed  Google Scholar 

  23. Di Marzo V, Melck D, Bisogno T et al. (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 21:521–528

    Article  PubMed  Google Scholar 

  24. Diener HC, Limmroth V (2001) Advances in pharmacological treatment of migraine. Expert Opin Investig Drugs 10:1831–1845

    Google Scholar 

  25. Einecke D (2004) [A new pill for metabolic syndrome. Successful control of lipids, kilos and cigarettes]. MMW Fortschr Med 146:10–11

    Google Scholar 

  26. Elsohly MA, Dewit H, Wachtel SR et al. (2001) Delta9-tetrahydrocannabivarin as a marker for the ingestion of marijuana versus Marinol: results of a clinical study. J Anal Toxicol 25:565–571

    Google Scholar 

  27. Fernandez-Ruiz J, Berrendero F, Hernandez ML et al. (2000) The endogenous cannabinoid system and brain development. Trends Neurosci 23:14–20

    Google Scholar 

  28. Fox SH, Kellett M, Moore AP et al. (2002) Randomised, double-blind, placebo-controlled trial to assess the potential of cannabinoid receptor stimulation in the treatment of dystonia. Mov Disord 17:145–149

    Google Scholar 

  29. Frankel JP, Hughes A, Lees AJ et al. (1990) Marijuana for parkinsonian tremor. J Neurol Neurosurg Psychiatry 53:436

    Google Scholar 

  30. Fride E (2002) Endocannabinoids in the central nervous system—an overview. Prostaglandins Leukot Essent Fatty Acids 66:221–233

    Google Scholar 

  31. Fukudome Y, Ohno-Shosaku T, Matsui M et al. (2004) Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur J Neurosci 19:2682–2692

    Google Scholar 

  32. Galiegue S, Mary S, Marchand J et al. (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    CAS  PubMed  Google Scholar 

  33. Giuffrida A, Piomelli D (2000) The endocannabinoid system: a physiological perspective on its role in psychomotor control. Chem Phys Lipids 108:151–158

    Google Scholar 

  34. Grotenhermen F (2004) Pharmacology of cannabinoids. Neuroendocrinol Lett 25:14–23

    Article  CAS  PubMed  Google Scholar 

  35. Grotenhermen F (2004) Hanf als Medizin. AT Verlag, Baden

  36. Guimaraes F, Chiaretti T, Graeff F et al. (1990) Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology (Berl) 100:558–559

    Google Scholar 

  37. Habayeb OM, Bell SC, Konje JC (2002) Endogenous cannabinoids: metabolism and their role in reproduction. Life Sci 70:1963–1977

    Google Scholar 

  38. Haller J, Varga B, Ledent C et al. (2004) CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol 15:299–304

    Google Scholar 

  39. Hampson A, Grimaldi M, Axelrod J et al. (1998) Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95:8268–8273

    Google Scholar 

  40. Hanus L, Abu-Lafi S, Fride E et al. (2001) 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA 98:3662–3665

    Google Scholar 

  41. Jabusch JC, Schneider U, Altenmueller E (2004) Delta-9-Tetrahydrocannabinol (THC) in treatment of muscian’s dystonia. Mov Disord 19:990–991

    Google Scholar 

  42. Johns A (2001) Psychiatric effects of cannabis. Br J Psychiatry 178:116–122

    Article  CAS  PubMed  Google Scholar 

  43. Karst M, Salim K, Conrad I et al. (2003) Analgesic effects of synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA 120:103–105

    Google Scholar 

  44. Kathuria S, Gaetani S, Fegley D et al. (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  Google Scholar 

  45. Killestein J, Hoogervorst EL, Reif M et al. (2002) Safety, tolerability, and efficacy of orally administered cannabinoids in MS. Neurology 58:1404–1407

    CAS  PubMed  Google Scholar 

  46. Klein TW, Lane B, Newton CA et al. (2000) The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 225:1–8

    Google Scholar 

  47. Knoller N, Levi L, Shoshan I et al. (2002) Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med 30:548–554

    Google Scholar 

  48. Kraus L, Augustin R, Müller-Klathoff T (2001) Konsumtrends und Konsumverhalten. Hüllinghorst RNeuland, Geesthacht, S 119–132

  49. Kreitzer AC, Regehr WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727

    Article  Google Scholar 

  50. Lambert D, Vandevoorde S, Jonsson K et al. (2002) The palmitoylethanolamide family: a new class of anti-inflammatory agents? Curr Med Chem 9:663–674

    Google Scholar 

  51. Lange J, Kruse C (2004) Recent advances in CB1 cannabinoid receptor antagonists. Curr Opin Drug Discov Devel 7:498–506

    Google Scholar 

  52. Leker R, Gai N, Mechoulam R et al. (2003) Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210. Stroke 34:2000–2006

    Google Scholar 

  53. Lichtman AH, Dimen KR, Martin BR (1995) Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology (Berl) 119:282–290

    Google Scholar 

  54. Liu J, Li H, Burstein SH et al. (2003) Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid. Mol Pharmacol 63:983–992

    Google Scholar 

  55. Lopez-Cepero M, Friedman M, Klein T et al. (1986) Tetrahydrocannabinol-induced suppression of macrophage spreading and phagocytic activity in vitro. J Leukoc Biol 39:679–686

    Google Scholar 

  56. Lyman WD, Sonett JR, Brosnan CF et al. (1989) Delta 9-tetrahydrocannabinol: a novel treatment for experimental autoimmune encephalomyelitis. J Neuroimmunol 23:73–81

    Google Scholar 

  57. Maccarrone M, Attina M, Cartoni A et al. (2001) Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. J Neurochem 76:594–601

    Google Scholar 

  58. Maccarrone M, Finazzi-Agro A (2002) Endocannabinoids and their actions. Vitam Horm 65:225–255

    Google Scholar 

  59. Massa F, Marsicano G, Hermann H et al. (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 113:1202–1209

    Article  CAS  PubMed  Google Scholar 

  60. Mcallister S, Griffin G, Satin L et al. (1999) Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. J Pharmacol Exp Ther 291:618–626

    Google Scholar 

  61. Mccoy KL, Matveyeva M, Carlisle SJ et al. (1999) Cannabinoid inhibition of the processing of intact lysozyme by macrophages: evidence for CB2 receptor participation. J Pharmacol Exp Ther 289:1620–1625

    Google Scholar 

  62. Mechoulam R, Panikashvili D, Shohami E (2002) Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 8:58–61

    Google Scholar 

  63. Milton NG (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci Lett 332:127–130

    Google Scholar 

  64. Moranta D, Esteban S, Garcia-Sevilla JA (2004) Differential effects of acute cannabinoid drug treatment, mediated by CB1 receptors, on the in vivo activity of tyrosine and tryptophan hydroxylase in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 369:516–524

    Google Scholar 

  65. Mueller-Vahl KR, Koblenz A, Jobges M et al. (2001) Influence of treatment of Tourette syndrome with delta9-tetrahydrocannabinol (delta9-THC) on neuropsychological performance. Pharmacopsychiatry 34:19–24

    Google Scholar 

  66. Mueller-Vahl KR, Schneider U, Emrich HM (1999) Nabilone increases choreatic movements in Huntington’s disease. Mov Disord 14:1038–1040

    Google Scholar 

  67. Mueller-Vahl KR, Schneider U, Koblenz A et al. (2002) Treatment of Tourette’s syndrome with Delta 9-tetrahydrocannabinol (THC): a randomized crossover trial. Pharmacopsychiatry 35:57–61

    Google Scholar 

  68. Mueller-Vahl KR, Prevedel H, Theloe K et al. (2003) Treatment of Tourette syndrome with delta-9-tetrahydrocannabinol (delta 9-THC): no influence on neuropsychological performance. Neuropsychopharmacology 28:384–388

    Google Scholar 

  69. Mueller-Vahl KR, Schneider U, Prevedel H et al. (2003) Delta 9-tetrahydrocannabinol (THC) is effective in the treatment of tics in Tourette syndrome: a 6-week randomized trial. J Clin Psychiatry 64:459–465

    Google Scholar 

  70. Naef M, Curatolo M, Petersen-Felix S et al. (2003) The analgesic effect of oral delta-9-tetrahydrocannabinol (THC), morphine, and a THC-morphine combination in healthy subjects under experimental pain conditions. Pain 105:79–88

    Article  CAS  PubMed  Google Scholar 

  71. Neuhaus O, Kieseier B, Klimke A et al. (2004) Cannabinoids in multiple sclerosis Opportunity or threat?. Nervenarzt 75:1022–1026

    Google Scholar 

  72. Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29:729–738

    Article  CAS  PubMed  Google Scholar 

  73. Parolaro D, Massi P, Rubino T et al. (2002) Endocannabinoids in the immune system and cancer. Prostaglandins Leukot Essent Fatty Acids 66:319–332

    Google Scholar 

  74. Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    Article  CAS  PubMed  Google Scholar 

  75. Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63:569–611

    Article  CAS  PubMed  Google Scholar 

  76. Petro DJ, Ellenberger CJ (1981) Treatment of human spasticity with delta 9-tetrahydrocannabinol. J Clin Pharmacol 21:413–416

    Google Scholar 

  77. Porter A, Sauer J, Knierman M et al. (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301:1020–1024

    Article  CAS  PubMed  Google Scholar 

  78. Ralevic V, Kendall DA, Randall MD et al. (2002) Cannabinoid modulation of sensory neurotransmission via cannabinoid and vanilloid receptors: roles in regulation of cardiovascular function. Life Sci 71:2577–2594

    Google Scholar 

  79. Rice AS, Farquhar-Smith WP, Nagy I (2002) Endocannabinoids and pain: spinal and peripheral analgesia in inflammation and neuropathy. Prostaglandins Leukot Essent Fatty Acids 66:243–256

    Google Scholar 

  80. Russo E (1998) Cannabis for migraine treatment: the once and future prescription? An historical and scientific review. Pain 76:3–8

    Google Scholar 

  81. Sacerdote P, Massi P, Panerai AE et al. (2000) In vivo and in vitro treatment with the synthetic cannabinoid CP55, 940 decreases the in vitro migration of macrophages in the rat: involvement of both CB1 and CB2 receptors. J Neuroimmunol 109:155–163

    Google Scholar 

  82. Schlimme J, Rada D, Schneider U (2001) [Cannabis consumption and its psychosocial effects in a comparison of different cultures]. Fortschr Neurol Psychiatr 69:367–373

    Google Scholar 

  83. Schnelle M, Grotenhermen F, Reif M et al. (1999) Results of a standardized survey on the medical use of cannabis products in the German-speaking area. Forsch Komplementarmed 6 [Suppl 3]:28–36

    Google Scholar 

  84. Shakespeare D, Boggild M, Young C (2004) Anti-spasticity agents for multiple sclerosis. Cochrane Database Syst Rev 4:CD001332

    Google Scholar 

  85. Shen M, Piser TM, Seybold VS et al. (1996) Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci 16:4322–4334

    Google Scholar 

  86. Sieradzan KA, Fox SH, Hill M et al. (2001) Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology 57:2108–2111

    Google Scholar 

  87. Strangman N, Walker J (1999) Cannabinoid WIN 55,212-2 inhibits the activity-dependent facilitation of spinal nociceptive responses. J Neurophysiol 82:472–477

    Google Scholar 

  88. Sugiura T, Kondo S, Kishimoto S et al. (2000) Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 275:605–612

    Google Scholar 

  89. Tang JL, Lancz G, Specter S et al. (1992) Marijuana and immunity: tetrahydrocannabinol-mediated inhibition of growth and phagocytic activity of the murine macrophage cell line, P388D1. Int J Immunopharmacol 14:253–262

    Google Scholar 

  90. Ungerleider JT, Andyrsiak T, Fairbanks L et al. (1987) Delta-9-THC in the treatment of spasticity associated with multiple sclerosis. Adv Alcohol Subst Abuse 7:39–50

    Google Scholar 

  91. Van Der Stelt M, Veldhuis WB, Maccarrone M et al. (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 26:317–346

    Google Scholar 

  92. Vaney C, Heinzel-Gutenbrunner M, Jobin P et al. (2004) Efficacy, safety and tolerability of an orally administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled, crossover study. Mult Scler 10:417–424

    Google Scholar 

  93. Venance L, Piomelli D, Glowinski J et al. (1995) Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 376:590–594

    Google Scholar 

  94. Volicer L, Stelly M, Morris J et al. (1997) Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 12:913–919

    Google Scholar 

  95. Wade D, Makela P, Robson P et al. (2004) Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 10:434–441

    Google Scholar 

  96. Walker J, Hohmann A, Martin W et al. (1999) The neurobiology of cannabinoid analgesia. Life Sci 65:665–673

    Google Scholar 

  97. Werner N, Koch J (2003) Effects of the cannabinoid antagonists AM281 and AM630 on deprivation-induced intake in Lewis rats. Brain Res 967:290–292

    Google Scholar 

  98. Yoshihara S, Morimoto H, Yamada Y et al. (2004) Cannabinoid Receptor Agonists Inhibit Sensory Nerve Activation in Guinea Pig Airways. Am J Respir Crit Care Med 170:941–946

    Google Scholar 

  99. Zajicek J, Fox P, Sanders H et al. (2003) Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet 362:1517–1526

    Article  CAS  PubMed  Google Scholar 

  100. Zhu LX, Sharma S, Stolina M et al. (2000) Delta-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J Immunol 165:373–380

    Google Scholar 

Download references

Danksagung

Die Autoren widmen diese Arbeit Herrn Prof. Dr. Dr. H.M. Emrich zu seinem 60. Geburtstag.

Interessenkonflikt

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, U., Seifert, J., Karst, M. et al. Das endogene Cannabinoidsystem . Nervenarzt 76, 1062–1076 (2005). https://doi.org/10.1007/s00115-005-1888-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-005-1888-7

Schlüsselwörter

Keywords

Navigation