Skip to main content
Log in

Fahrradfahren Querschnittgelähmter mittels funktioneller Elektrostimulation

Eine experimentelle und modellbasierte Untersuchung der Leistungsabgabe

Paraplegic cycling using functional electrical stimulation

Experimental and model-based study of power output

  • Originalien
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Das durch funktionelle Elektrostimulation (FES) realisierte Fahrradfahren Querschnittgelähmter bietet die Möglichkeit des Muskel- und kardiovaskulären Trainings in Kombination mit einer erhöhten Mobilität im täglichen Leben. Zur Untersuchung der Frage, ob diese Methode einer größeren Gruppe von querschnittgelähmten Patienten zur Verfügung gestellt werden kann, wurde Anfang 2003 an der Neurologischen Klinik der Universität München die erste deutsche Machbarkeitsstudie für Fahrradfahren durch FES mit bisher 7 Patienten gestartet. Diese konnten bereits zu Beginn ohne Training Strecken zwischen 0,5–1,6 km zurücklegen. Um beim FES-Ergometertraining kardiovaskuläre Adaptationsprozesse in Gang zu setzen oder beim FES-Radfahren alltagstaugliche Fahrstrecken bewältigen zu können, muss ein Mindestmaß an Leistung abgegeben werden, eine derzeit im Regelfall noch nicht erfüllbare Forderung. In der vorgelegten Arbeit wurden zwei der Ursachen, die die Leistungsabgabe beeinträchtigen—anhaltender Höchstleistungsbetrieb und viskose Gelenkreibung—, genauer analysiert und mögliche Ansatzpunkte zur Erhöhung der Ausgangsleistung und der Ausdauerzeit diskutiert.

Abstract

Cycling using functional electrical stimulation offers paraplegics the possibility of muscle and cardiovascular training as well as the chance for independent locomotion. To investigate whether this method might be suitable for a large group of paraplegics, the first German feasibility study of functional electrical stimulation (FES) cycling with seven paraplegic patients was started at the beginning of 2003. Even at the beginning of the study, and without training, these patients were able to drive distances of 0.5–1.6 km. To stimulate cardiovascular adaptation processes in the case of FES ergometer training or to cover useful distances in the case of FES cycling, a minimum amount of generated mechanical output power is required, which as a rule cannot be achieved yet. In this study, we point out two particular aspects of FES cycling, which impair power output: prolonged fatigue mode and viscous joint friction of the paraplegic FES cyclist. We discuss current possibilities for increasing output power and endurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Angeli T, Gföhler M, Eberharter T et al. (2001) Optimization of pedal path for cycling powered by lower extremity muscles activated by Functional Electrical Stimulation.Computer Methods in Biomechanics and Biomedical Engineering, Gordon and Breach Science Publishers

  2. Arnold PB, McVey PP, Farrell WJ et al. (1992) Functional electric stimulation: its efficacy and safety in improving pulmonary function and musculoskeletal fitness. Arch Phys Med Rehabil 73:665–668

    CAS  PubMed  Google Scholar 

  3. Astrand PO, Rodahl K (1989) Textbook of work physiology. McGraw-Hill

  4. Binder-Macleod SA (1995) Variable-frequency stimulation patterns for the optimization of force during muscle fatigue. Muscle wisdom and the catchlike property. Adv Exp Med Biol 384:227–240

    CAS  PubMed  Google Scholar 

  5. Eser PC, Donaldson NN, Knecht H et al. (2003) Influence of different stimulation frequencies on power output and fatigue during FES-cycling in recently injured SCI People. IEEE Trans Neural Syst Rehabil Eng 11:236–240

    Article  PubMed  Google Scholar 

  6. Figoni SF, Glaser RM, Rodgers MM et al. (1991) Acute hemodynamics responses of spinal cord injured individuals to FNS-induced knee extension exercise. J Rehabil Res Dev 28:9–18

    CAS  PubMed  Google Scholar 

  7. Fitzwater R (2001) A personal users view of FES cycling. In: 7th Vienna International Workshop on Functional Electrical Stimulation, pp 48–51

  8. Fornusek Ch, Davis GM, Sinclair PJ et al. (2004) Development of an isokinetic functional electrical stimulation cycle ergometer. Neuromodulation 7:56–64

    Google Scholar 

  9. Gföhler M, Lugner P (2000) Cycling by means of functional electrical stimulation. IEEE Trans Rehabil Eng 8:233–243

    Article  PubMed  Google Scholar 

  10. Hoy MG, Zajac FE, Gordon ME (1990) A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee and angle. J Biomech 23:157–169

    Article  CAS  PubMed  Google Scholar 

  11. Hunt KJ, Schauer T, Negard NO et al. (2002) A pilot study of lower-limb FES-cycling in paraplegia. 7th IFESS Conference, Ljubljana

  12. Kern H, Frey M, Holle J et al. (1985) Functional electrostimulation of paraplegic patients 1 year’s practical application. Z Orthop 123:1-12

    CAS  PubMed  Google Scholar 

  13. Liberson W, Dow M, Holmquest J et al. (1961) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of gait of hemiplegic patients. Arch Phys Med Rehabil 42:101–105

    PubMed  Google Scholar 

  14. Perkins TA, Donaldson NN, Hatcher NAC et al. (2002) Control of leg-powered paraplegic cycling using stimulation of the lumbo-sacral anterior spinal nerve roots. IEEE Trans Neural Syst Rehabil Eng 10:158–164

    Article  PubMed  Google Scholar 

  15. PerkinsTA, Donaldson NN, Fitzwater R et al. (2001) Leg-powered paraplegic cycling system using surface functional electrical stimulation. 7th Vienna International Workshop on Functional Electrical Stimulation, pp 12–15

  16. Petrofsky JS, Heaton HH, Phillips CA (1983) Outdoor bicycle for exercise in paraplegics and quadriplegics. J Biomed Eng 5:292–296

    CAS  PubMed  Google Scholar 

  17. Petrofsky JS, Stacy R (1992) The effect of training on endurance and the cardiovascular responses of individuals with paraplegia during dynamic exercise induced by functional electrical stimulation. Eur J Appl Physiol 64:487–492

    CAS  Google Scholar 

  18. Pollack SF, Axen K, Spielholz N et al. (1989) Aerobic training effects of electrically induced lower extremity exercises in spinal cord injured people. Arch Phys Med Rehabil 70:214–219

    CAS  PubMed  Google Scholar 

  19. Pons DJ, Vaughan CL, Jaros GG (1989) Cycling device powered by the electrically stimulated muscles of paraplegics. Med Biol Eng Comput 27:1–7

    CAS  PubMed  Google Scholar 

  20. Raymond J, Davis GM, Climstein M et al. (1999) Cardiorespiratory responses to arm cranking and electrical stimulation leg cycling in people with paraplegia. Med Sci Sports Exerc 31:822–828

    Article  CAS  PubMed  Google Scholar 

  21. Riener R, Fuhr T (1998) Patient driven control of FES-supported standing-up: a simulation study. IEEE Trans Rehabil Eng 6:113–124

    Article  CAS  PubMed  Google Scholar 

  22. Schutte LM, Rodgers MM, Zajac FE et al. (1993) Improving the efficacy of electrical stimulation induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model. IEEE Trans Rehabil Eng 1:109–125

    Article  Google Scholar 

  23. Sinclair PJ, Davis GM, Smith RM et al. (1996) Pedal forces produced during neuromuscular electrical stimulation cycling in paraplegics. Clin Biomech 11:51–57

    Article  Google Scholar 

  24. Stein RB, Zehr P, Lebiedowska MK et al. (1990) Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. IEEE Trans Rehabil Eng 4:201–211

    Article  Google Scholar 

  25. Szecsi J, Fiegel M, Krause P et al. (2004) Individual adaptation of functional electrical stimulation of paraplegics in different cycling tasks. Tech Health Care 12[Suppl]:89–93

Download references

Danksagung

Wir danken der Deutschen Forschungsgemeinschaft (SFB 462) für die Unterstützung des Projektes „Vom Laborsystem zur klinisch angewandten, geregelten Neuroprothese: Sensorik, Mensch-Maschine-Schnittstelle; Anwendungsstudie“, in dessen Rahmen Teile der vorliegenden Studie durchgeführt werden konnten.

Interessenkonflikt

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Szecsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szecsi, J., Krafczyk, S., Quintern, J. et al. Fahrradfahren Querschnittgelähmter mittels funktioneller Elektrostimulation . Nervenarzt 75, 1209–1216 (2004). https://doi.org/10.1007/s00115-004-1802-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-004-1802-8

Schlüsselwörter

Keywords

Navigation