Skip to main content
Log in

Multiple Sklerose: potenzielle Therapieansätze und Update laufender Studien

Multiple sclerosis: potential therapeutic options and update of ongoing clinical trials

  • Übersicht
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Therapiemöglichkeiten der Multiplen Sklerose (MS) haben sich in den letzten Jahren deutlich verbessert. Trotz dieser Fortschritte bleibt die Erkrankung bis heute unheilbar, und das Ziel einer nebenwirkungsarmen und hocheffizienten Therapie ist nicht erreicht. Die Erkenntnisse im zellulären und molekularen Verständnis wichtiger Schritte in der MS-Pathogenese weisen auf verschiedenartige und neue Zielstrukturen bzw. Ansatzpunkte zukünftiger Entwicklungen hin, bei denen neben der selektiven Modulation entzündlicher Komponenten nunmehr vor allem Strategien zur aktiven Neuroprotektion, Remyelinisierung und Förderung der Regeneration in das zentrale Interesse rücken. Auf Grundlage gegenwärtiger pathogenetischer Konzepte skizziert der vorliegende Artikel denkbare Therapiekonzepte und -strategien. Agentien und Ansätze, die sich gegenwärtig in der klinischen Prüfung befinden, werden aktuell zusammengestellt, wobei unterteilt wird zwischen (immun)pathogenetisch orientierten Ansätzen, neueren immunmodulatorischen und immunsuppressiven Agentien sowie antiinfektiösen Therapien.

Summary

The therapeutic options for the treatment of multiple sclerosis (MS) have experienced enormous progress over recent years. Despite these encouraging developments, available therapies are only partially effective, and the ultimate goal of curing MS is still far from being attained. The improved understanding of the cellular and molecular mechanisms of MS (immune) pathogenesis together with recent shifts in paradigms led to a variety of new therapeutic targets and approaches. In addition to modulation of the inflammatory process, therapeutic approaches focussing on active neuroprotection, remyelinization, and regeneration have become increasingly important. Based on current concepts of the MS pathogenesis, this article summarizes new therapeutic approaches. Substances and strategies currently tested in clinical trials are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.

Literatur

  1. Hohlfeld R, Wiendl H (2001) The ups and downs of multiple sclerosis therapeutics. Ann Neurol 49:281–284

    Article  CAS  PubMed  Google Scholar 

  2. Kieseier BC, Hartung HP (2003) Multiple paradigm shifts in multiple sclerosis. Curr Opin Neurol 16:247–252

    Article  PubMed  Google Scholar 

  3. Hohlfeld R (1997) Biotechnological agents for the immunotherapy of multiple sclerosis: Principles, problems and perspectives. Brain 120:865–916

    Article  PubMed  Google Scholar 

  4. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  CAS  PubMed  Google Scholar 

  5. Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3:291–301

    Article  CAS  PubMed  Google Scholar 

  6. Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764

    Article  CAS  PubMed  Google Scholar 

  7. Benoist C, Mathis D (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2:797–801

    CAS  PubMed  Google Scholar 

  8. Lang HL, Jacobsen H, Ikemizu S et al. (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 3:940–943

    Article  CAS  PubMed  Google Scholar 

  9. Babbe H, Roers A, Waisman A et al. (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404

    Article  CAS  PubMed  Google Scholar 

  10. Lassmann H, Brück W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121

    Article  CAS  PubMed  Google Scholar 

  11. Archelos JJ, Hartung HP (2000) Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci 23:317–327

    Article  CAS  PubMed  Google Scholar 

  12. Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302

    Article  CAS  PubMed  Google Scholar 

  13. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  14. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278

    Article  CAS  PubMed  Google Scholar 

  15. Zipp F, Krammer PH, Weller M (1999) Immune (dys)regulation in multiple sclerosis: role of the CD95-CD95 ligand system. Immunol Today 20:550–554

    Article  CAS  PubMed  Google Scholar 

  16. Frauwirth KA, Thompson CB (2002) Activation and inhibition of lymphocytes by costimulation. J Clin Invest 109:295–299

    Article  CAS  PubMed  Google Scholar 

  17. Kobata, T., M. Azuma, H. Yagita, and K. Okumura (2000) Role of costimulatory molecules in autoimmunity. Rev Immunogenet 2:74–80

    CAS  PubMed  Google Scholar 

  18. Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20:29–53

    Article  CAS  PubMed  Google Scholar 

  19. Racke MK, Stuart RW (2002) Targeting T cell costimulation in autoimmune disease. Expert Opin Ther Targets 6:275–289

    PubMed  Google Scholar 

  20. Anderson DE, Sharpe AH, Hafler DA (1999) The B7-CD28/CTLA-4 costimulatory pathways in autoimmune disease of the central nervous system. Curr Opin Immunol 11:677–683

    CAS  PubMed  Google Scholar 

  21. Chang TT, Sobel RA, Wei T, Ransohoff RM, Kuchroo VK, Sharpe AH (2003) Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7–1/B7–2-deficient mice. Eur J Immunol 33:2022–2032

    Article  CAS  PubMed  Google Scholar 

  22. Kantarci OH, Hebrink DD, Achenbach SJ et al. (2003) CTLA4 is associated with susceptibility to multiple sclerosis. J Neuroimmunol 134:133–141

    Article  CAS  PubMed  Google Scholar 

  23. Maurer M, Loserth S, Kolb-Maurer A, Ponath A, Wiese S, Kruse N, Rieckmann P (2002) A polymorphism in the human cytotoxic T-lymphocyte antigen 4 ( CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54:1–8 (Epub 2002 Mar 2012)

    Article  PubMed  Google Scholar 

  24. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569

    CAS  PubMed  Google Scholar 

  25. Abrams JR, Lebwohl MG, Guzzo CA et al. (1999) CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 103:1243–1252

    CAS  PubMed  Google Scholar 

  26. Abrams JR, Kelley SL, Hayes E et al. (2000) Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J Exp Med 192:681-994

    Article  CAS  PubMed  Google Scholar 

  27. Coles AJ, Wing MG, Molyneux P et al. (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46:296–304

    Article  CAS  PubMed  Google Scholar 

  28. Coles AJ, Wing M, Smith S et al. (1999) Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 354:1691–1695

    Article  CAS  PubMed  Google Scholar 

  29. Huston JS, George AJ (2001) Engineered antibodies take center stage. Hum Antibodies 10:127–142

    CAS  PubMed  Google Scholar 

  30. Weinberg AD, Bourdette DN, Sullivan TJ et al. (1996) Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 2:183–189

    CAS  PubMed  Google Scholar 

  31. Sperling AI (2001) ICOS costimulation: is it the key to selective immunotherapy? Clin Immunol 100:261–262

    Article  CAS  PubMed  Google Scholar 

  32. Wiendl H, Neuhaus O, Mehling M et al. (2003) The CD28 related molecule ICOS: T cell modulation in the presence and absence of B7.1/2 and regulational expression in multiple sclerosis. J Neuroimmunol 140:177–187

    Article  CAS  PubMed  Google Scholar 

  33. Medaer R, Stinissen P, Truyen L, Raus J, Zhang J (1995) Depletion of myelin-basic-protein autoreactive T cells by T-cell vaccination: pilot trial in multiple sclerosis. Lancet 346:807–808

    Article  CAS  PubMed  Google Scholar 

  34. Vandenbark AA, Chou YK, Whitham R et al. (1996) Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nature Medicine 2:1109–1115

    CAS  PubMed  Google Scholar 

  35. Killestein J, Olsson T, Wallstrom E et al. (2002) Antibody-mediated suppression of Vbeta5.2/5.3+ T cells in multiple sclerosis: results from an MRI-monitored phase II clinical trial. Ann Neurol 51:467–474

    Article  CAS  PubMed  Google Scholar 

  36. Olsson T, Edenius C, Ferm M et al. (2002) Depletion of Vbeta5.2/5.3 T cells with a humanized antibody in patients with multiple sclerosis. Eur J Neurol 9:153–164

    Article  PubMed  Google Scholar 

  37. Van Der Aa A, Hellings N, Medaer R, Gelin G, Palmers Y, Raus J, Stinissen P (2003) T cell vaccination in multiple sclerosis patients with autologous CSF-derived activated T cells: results from a pilot study. Clin Exp Immunol 131:155–168

    Article  PubMed  Google Scholar 

  38. Bielekova B, Goodwin B, Richert N et al. (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175

    CAS  PubMed  Google Scholar 

  39. Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P, Steinman L, Group atAiRMS (2000) Induction of a non-encephalitogenic type 2 T-helper cell autoimmune response in multiple Sclerosis after administration of an altered peptide ligand in a placebo controlled, randomized phase II trial. Nat Med 6:1176–1182

    CAS  PubMed  Google Scholar 

  40. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  41. Archelos JJ, Storch MK, Hartung HP (2000) The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol 47:694–706

    Article  CAS  PubMed  Google Scholar 

  42. Berger T, Rubner P, Schautzer F et al. (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349:139–145

    Article  CAS  PubMed  Google Scholar 

  43. Lucchinetti CF, Mandler RN, McGavern D et al. (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461

    Article  PubMed  Google Scholar 

  44. Brück W, Neubert K, Berger T, Weber JR (2001) Clinical, radiological, immunological and pathological findings in inflammatory CNS demyelination--possible markers for an antibody-mediated process. Mult Scler 7:173–177

    Article  CAS  PubMed  Google Scholar 

  45. Gold R, Linington C (2002) Devic’s disease: bridging the gap between laboratory and clinic. Brain 125:1425–1427

    Article  PubMed  Google Scholar 

  46. Weinshenker BG, O’Brien PC, Petterson TM et al. (1999) A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol 46:878–886

    Article  CAS  PubMed  Google Scholar 

  47. Keegan M, Pineda AA, McClelland RL, Darby CH, Rodriguez M, Weinshenker BG (2002) Plasma exchange for severe attacks of CNS demyelination: Predictors of response. Neurology 58:143–146

    CAS  PubMed  Google Scholar 

  48. Mao-Draayer Y, Braff S, Pendlebury W, Panitch H (2002) Treatment of steroid-unresponsive tumefactive demyelinating disease with plasma exchange. Neurology 59:1074–1077

    PubMed  Google Scholar 

  49. Grillo-Lopez AJ, Hedrick E, Rashford M, Benyunes M (2002) Rituximab: ongoing and future clinical development. Semin Oncol 29:105–112

    Google Scholar 

  50. Archelos JJ, Previtali SC, Hartung HP (1999) The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci 22:30–38

    Article  CAS  PubMed  Google Scholar 

  51. Tubridy N, Behan PO, Capildeo R et al. (1999) The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology 53:466–472

    CAS  PubMed  Google Scholar 

  52. Miller DH, Khan OA, Sheremata WA et al. (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348:15–23

    Article  CAS  PubMed  Google Scholar 

  53. von Andrian UH, Engelhardt B (2003) Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 348:68–72

    Article  PubMed  Google Scholar 

  54. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568

    CAS  PubMed  Google Scholar 

  55. Soerensen TL, Tani M, Jemsem J et al. (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815

    PubMed  Google Scholar 

  56. Ransohoff RM (1999) Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. J Neuroimmunol 98:57–68

    Article  CAS  PubMed  Google Scholar 

  57. Glabinsk AR, Ransohoff RM (2001) Targeting the chemokine system for multiple sclerosis treatment. Curr Opin Investig Drugs 2:1712–1719

    CAS  PubMed  Google Scholar 

  58. Elices MJ (2002) BX-471 Berlex. Curr Opin Investig Drugs 3:865–869

    CAS  PubMed  Google Scholar 

  59. Hartung HP, Kieseier BC (2000) The role of matrix metalloproteinases in autoimmune damage to the central and peripheral nervous system. J Neuroimmunol 107:140–147

    CAS  PubMed  Google Scholar 

  60. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  CAS  PubMed  Google Scholar 

  61. Clements JM, Cossins JA, Wells GMA et al. (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumor necrosis factor-a inhibitor. J Neuroimmunol 74:85–94

    CAS  PubMed  Google Scholar 

  62. Kieseier BC, Kiefer R, Clements JM et al. (1998) Matrix metalloproteinase-9 and −7 are regulated in experimental autoimmune encephalomyelitis. Brain 121:159–166

    PubMed  Google Scholar 

  63. Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55:300–309

    Google Scholar 

  64. Lindberg RL, De Groot CJ, Montagne L, Freitag P, van der Valk P, Kappos L, Leppert D (2001) The expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis. Brain 124:1743–1753

    Article  CAS  PubMed  Google Scholar 

  65. Kieseier BC, Seifert T, Giovannoni G, Hartung HP (1999) Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology 53:20–25

    Google Scholar 

  66. Paemen L, Martens E, Norga K, Masure S, Roets E, Hoogmartens J, Opdenakker G (1996) The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol 52:105–111

    Google Scholar 

  67. Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125:1297–1308

    Article  PubMed  Google Scholar 

  68. Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51:215–223

    Article  CAS  PubMed  Google Scholar 

  69. Thoenen H, Sendtner M (2002) Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci 5 Suppl:1046–1050

    Article  Google Scholar 

  70. Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253

    CAS  PubMed  Google Scholar 

  71. Villoslada P, Hauser SL, Bartke I et al. (2000) Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 191:1799–1806

    Article  CAS  PubMed  Google Scholar 

  72. Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H (2000) The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmunol 107:161–166

    Article  CAS  PubMed  Google Scholar 

  73. Ransohoff RM, Howe CL, Rodriguez M (2002) Growth factor treatment of demyelinating disease: at last, a leap into the light. Trends Immunol 23:512–516

    Article  CAS  PubMed  Google Scholar 

  74. Kerschensteiner M, Gallmeier E, Behrens L et al. (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    CAS  PubMed  Google Scholar 

  75. Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125:75–85

    Article  PubMed  Google Scholar 

  76. Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR (1999) Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 22:295–299

    CAS  PubMed  Google Scholar 

  77. Linker RA, Maurer M, Gaupp S et al. (2002) CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 8:620–624

    Article  CAS  PubMed  Google Scholar 

  78. Butzkueven H, Zhang JG, Soilu-Hanninen M et al. (2002) LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 8:613–619

    Article  CAS  PubMed  Google Scholar 

  79. Frank JA, Richert N, Lewis B et al. (2002) A pilot study of recombinant insulin-like growth factor-1 in seven multiple sderosis patients. Mult Scler 8:24–29

    Article  CAS  PubMed  Google Scholar 

  80. Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH (2002) The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler 8:532–533

    Article  CAS  PubMed  Google Scholar 

  81. Brück W, Kuhlmann T, Stadelmann C (2003) Remyelination in multiple sclerosis. J Neurol Sci 206:181–185

    Article  PubMed  Google Scholar 

  82. Stangel M, Hartung HP (2002) Remyelinating strategies for the treatment of multiple sclerosis. Prog Neurobiol 68:361–376

    Article  CAS  PubMed  Google Scholar 

  83. Blakemore WF, Franklin RJ (2000) Transplantation options for therapeutic central nervous system remyelination. Cell Transplant 9:289–294

    CAS  PubMed  Google Scholar 

  84. Pluchino S, Quattrini A, Brambilla E et al. (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–664

    Article  CAS  PubMed  Google Scholar 

  85. Steinman L (2003) Medicine: Collateral damage repaired. Nature 422:671–672

    Article  CAS  PubMed  Google Scholar 

  86. Hohlfeld R (2002) How promising is hematopoetic stem cell transplantation in multiple sclerosis? J Neurol 249:1147–1149

    Article  PubMed  Google Scholar 

  87. Fassas A, Passweg JR, Anagnostopoulos A et al. (2002) Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol 249:1088–1097

    CAS  PubMed  Google Scholar 

  88. Maurer M, Rieckmann P (2000) What is the potential of combination therapy in MS. BioDrugs

  89. Fernandez O, Guerrero M, Mayorga C et al. (2002) Combination therapy with interferon beta-1b and azathioprine in secondary progressive multiple sclerosis. A two-year pilot study. J Neurol 249:1058–1062

    Article  CAS  PubMed  Google Scholar 

  90. Hartung H-P, Gonsette P, König N et al. and the MIMS Study Group (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025

    Article  PubMed  Google Scholar 

  91. Elit L (2002) CCI-779 Wyeth. Curr Opin Investig Drugs 3:1249–1253

    CAS  PubMed  Google Scholar 

  92. Mandala S, Hajdu R, Bergstrom J et al. (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349

    Article  CAS  PubMed  Google Scholar 

  93. Pinschewer DD, Ochsenbein AF, Odermatt B, Brinkmann V, Hengartner H, Zinkernagel RM (2000) FTY720 Immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion and memory. J Immunol 164:5761–5770

    CAS  PubMed  Google Scholar 

  94. Fujino M, Funeshima N, Kitazawa Y, Kimura H, Amemiya H, Suzuki S, Li XK (2003) Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305:70–77

    Article  CAS  PubMed  Google Scholar 

  95. Lemaire L, Fournier J, Ponthus C et al. (2002) Magnetic resonance imaging of the neuroprotective effect of xaliproden in rats. Invest Radiol 37:321–327

    Article  CAS  PubMed  Google Scholar 

  96. Miceli-Richard C, Dougados M (2003) Leflunomide for the treatment of rheumatoid arthritis. Expert Opin Pharmacother 4:987–997

    Article  CAS  PubMed  Google Scholar 

  97. Ahrens N, Salama A, Haas J (2001) Mycophenolate-mofetil in the treatment of refractory multiple sclerosis. J Neurol 248:713–714

    Article  CAS  PubMed  Google Scholar 

  98. Brunmark C, Runstrom A, Ohlsson L, Sparre B, Brodin T, Astrom M, Hedlund G (2002) The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol 130:163–172

    Article  CAS  PubMed  Google Scholar 

  99. Weissert R, Wiendl H, Storch M, Pfrommer H, Schreiner B, Melms A, Dichgans J, Weller M (2004) High immunosuppressive capacity and safety due to reduced toxicity: Treosulfan in MOG-induced EAE and MS. J Neuroimmunol 144:28–37

    Google Scholar 

  100. Beggiolin G, Crippa L, Menta E et al. (2001) BR 2778, an aza-anthracenedione endowed with preclinical anticancer activity and lack of delayed cardiotoxicity. Tumori 87:407–416

    CAS  PubMed  Google Scholar 

  101. Chou KM, Krapcho AP, Horn D, Hacker M (2002) Characterization of anthracenediones and their photoaffinity analogs. Biochem Pharmacol 63:1143–1147

    Google Scholar 

  102. Dyke HJ, Montana JG (2002) Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 11:1–13

    CAS  PubMed  Google Scholar 

  103. Bielekova B, Lincoln A, McFarland H, Martin R (2000) Therapeutic potential of phosphodiesterase-4 and −3 inhibitors in Th1-mediated autoimmune diseases. J Immunol 164:1117–1124

    CAS  PubMed  Google Scholar 

  104. Sommer N, Loschmann PA, Northoff GH et al. (1995) The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat Med 1:244–248

    CAS  PubMed  Google Scholar 

  105. Jung S, Zielasek J, Kollner G, Donhauser T, Toyka K, Hartung HP (1996) Preventive but not therapeutic application of Rolipram ameliorates experimental autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 68:1–11

    Article  CAS  PubMed  Google Scholar 

  106. Dinter H, Tse J, Halks-Miller M et al. (2000) The type IV phosphodiesterase specific inhibitor mesopram inhibits experimental autoimmune encephalomyelitis in rodents. J Neuroimmunol 108:136–146

    Article  CAS  PubMed  Google Scholar 

  107. Kwak B, Mulhaupt F, Myit S, Mach F (2000) Statins as a newly recognized type of immunomodulator. Nat Med 6:1399–1402

    Article  CAS  PubMed  Google Scholar 

  108. Youssef S, Stuve O, Patarroyo JC et al. (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420:78–84

    Article  CAS  PubMed  Google Scholar 

  109. Neuhaus O, Strasser-Fuchs S, Fazekas F, Kieseier BC, Niederwieser G, Hartung HP, Archelos JJ (2002) Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology 59:990–997

    CAS  PubMed  Google Scholar 

  110. Aktas O, Waiczies S, Smorodchenko A et al. (2003) Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med 197:725–733

    Article  CAS  PubMed  Google Scholar 

  111. Stuve O, Youssef S, Steinman L, Zamvil SS (2003) Statins as potential therapeutic agents in neuroinflammatory disorders. Curr Opin Neurol 16:393–401

    Article  PubMed  Google Scholar 

  112. Neuhaus O, Wiendl H, Kieseier BC, Archelos JJ, Hartung HP (2003) Cholesterinsenker-eine neue Therapieoption bei Multipler Sklerose? Statine als Immunmodulatoren. Nervenarzt 74:704–707

    CAS  PubMed  Google Scholar 

  113. Weitz-Schmidt G, Welzenbach K, Brinkmann V et al. (2001) Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 7:687–692

    Article  CAS  PubMed  Google Scholar 

  114. Vollmer T, Durkalski V, Tyor W, Corboy J (2003) An open-label, single arm study of simvastatin as a therapy for MS. Neurology 60:A84

    Article  Google Scholar 

  115. Bebo BF Jr, Fyfe-Johnson A, Adlard K, Beam AG, Vandenbark AA, Offner H (2001) Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol 166:2080–2089

    CAS  PubMed  Google Scholar 

  116. Sicotte NL, Liva SM, Klutch R et al. (2002) Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol 52:421–428

    Article  CAS  PubMed  Google Scholar 

  117. Koprowski H, Spitsin SV, Hooper DC (2001) Prospects for the treatment of multiple sclerosis by raising serum levels of uric acid, a scavenger of peroxynitrite. Ann Neurol 49:139

    Article  CAS  PubMed  Google Scholar 

  118. Scott GS, Spitsin SV, Kean RB, Mikheeva T, Koprowski H, Hooper DC (2002) Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A 99:16303–16308

    Article  CAS  PubMed  Google Scholar 

  119. Swanborg RH, Whittum-Hudson JA, Hudson AP (2002) Human herpesvirus 6 and Chlamydia pneumoniae as etiologic agents in multiple sclerosis — a critical review. Microbes Infect 4:1327–1333

    Article  PubMed  Google Scholar 

  120. Meinl E (1999) Concepts of viral pathogenesis of multiple sclerosis. Curr Opin Neurol 12:303–307

    Article  CAS  PubMed  Google Scholar 

  121. Ascherio A, Munger KL, Lennette ET et al. (2001) Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. Jama 286:3083–3088

    Article  CAS  PubMed  Google Scholar 

  122. Levin LI, Munger KL, Rubertone MV, Peck CA, Lennette ET, Spiegelman D, Ascherio A (2003) Multiple sclerosis and Epstein-Barr virus. Jama 289:1533–1536

    Article  PubMed  Google Scholar 

  123. Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet 1:1313–1315

    CAS  PubMed  Google Scholar 

  124. Bergstrom T (2000) Several options for antiviral treatment trials in multiple sclerosis--but which targets should be selected? Expert Opin Pharmacother 1:1087–1090

    CAS  PubMed  Google Scholar 

  125. Lycke J, Svennerholm B, Hjelmquist E et al. (1996) Acyclovir treatment of relapsing-remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study. J Neurol 243:214–224

    CAS  PubMed  Google Scholar 

  126. Sriram S, Stratton CW, Yao S, Tharp A, Ding L, Bannan JD, Mitchell WM (1999) Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann Neurol 46:6–14

    Article  CAS  PubMed  Google Scholar 

  127. Krametter D, Niederwieser G, Berghold A, Birnbaum G, Strasser-Fuchs S, Hartung HP, Archelos JJ (2001) Chlamydia pneumoniae in multiple sclerosis: humoral immune responses in serum and cerebrospinal fluid and correlation with disease activity marker. Mult Scler 7:13–18

    Article  CAS  PubMed  Google Scholar 

  128. Derfuss T, Gürkov R, Then Bergh F et al. (2001) Intrathecal antibody production against Chlamydia pneumoniae in multiple sclerosis is part of a polyspecific immune response. Brain 124:1325–1335

    Article  CAS  PubMed  Google Scholar 

  129. Griggs RC (2001) Chlamydia: conflict and controversy. Neurology 56:1130

    CAS  PubMed  Google Scholar 

  130. Wiendl H, Hohlfeld R (2002) Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 16:183–200

    CAS  PubMed  Google Scholar 

  131. Steinman L, Martin R, Bernard C, Conlon P, Oksenberg JR (2002) Multiple Sclerosis: Deeper Understanding of Its Pathogenesis Reveals New Targets for Therapy. Annu Rev Neurosci 25:491–505

    PubMed  Google Scholar 

  132. Brundin LH, Brismar A, Danilov T, Olsson Johansson CB (2003) Neural Stem Cells: A Potential Source for Remyelination in Neuroinflammatory Disease. Brain Pathol 13:322

    PubMed  Google Scholar 

  133. Halfpenny C, Benn T, Scolding N (2002) Cell transplantation, myelin repair, and multiple sclerosis. Lancet Neurol 1(1):31–40

    Article  PubMed  Google Scholar 

  134. Charles P, Reynolds R, Seilhean D et al. (2002) Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 125(Pt 9):1972–9

    Article  PubMed  Google Scholar 

  135. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346(3):165–73

    Article  PubMed  Google Scholar 

  136. Wiendl H, Kieseier BC (2003) Disease modifying therapies in multiple sclerosis: an update on recent and ongoing trials and future strategies. Expert Opin Invest Drugs 12(4):689–712

    Article  CAS  Google Scholar 

  137. Burt RK, Cohen BA, Russel E et al. (2003) Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood 102(7):2373–2378

    Article  CAS  PubMed  Google Scholar 

  138. Nash RA, Bowen JD Mcsweeney PA et al. (2003) High-dose immunosuppresive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 102(7):2364–2372

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Das Institut für klinische Neuroimmunologie wird von der Hermann-und-Lilly-Schilling-Stiftung unterstützt. H. Wiendl, R. Hohlfeld, H-P. Hartung und B.C. Kieseier haben teilgenommen oder nehmen an Studien genannter Präparate teil. Ebenso haben sie Honorare seitens der Pharmaindustrie für Konsultationen und/oder Referententätigkeiten erhalten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wiendl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiendl, H., Lehmann, H.C., Hohlfeld, R. et al. Multiple Sklerose: potenzielle Therapieansätze und Update laufender Studien. Nervenarzt 75, 536–552 (2004). https://doi.org/10.1007/s00115-003-1665-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-003-1665-4

Schlüsselwörter

Keywords

Navigation