Skip to main content
Log in

Die Wirkung von Antipsychotika auf glutamaterge Neurotransmission im Tiermodell

  • Übersicht
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Post-mortem-Untersuchungen bestätigten, dass glutamaterge NMDA-, AMPA- und Kainatrezeptoren an der Pathophysiologie der Schizophrenie beteiligt sind. Ob die veränderten Rezeptorzahlen dabei krankheits- oder medikamentenbedingt sind, ist bislang unklar. Im Tiermodell wurde deshalb der Einfluss von antipsychotischer Medikation nach bis zu 6-monatiger Behandlung untersucht und hier zusammengefasst.

Übereinstimmend ergab sich eine erhöhte NMDA-Rezeptor-Bindung nach Haloperidol im Striatum und Nucleus accumbens, nach Clozapin nur im Nucleus accumbens. Die AMPA-Rezeptorzahl war nach Haloperidol im Gyrus cinguli, Striatum, insulären Kortex sowie Nucleus accumbens, nach Clozapin im anterioren Gyrus cinguli und infralimbischen Kortex erhöht. Die Kainatrezeptorbindung wurde im Hippokampus von beiden Antipsychotika erhöht, jedoch in größerem Ausmaß von Clozapin.

Die Ergebnisse zeigen einen differenziellen Effekt zwischen dem Neuroleptikum Haloperidol und dem Atypikum Clozapin. Ein Teil der post-mortem erhobenen Befunde im glutamatergen System bei Patienten mit langjähriger Schizophrenie lassen sich auf auf Medikamenteneffekte zurückführen und sind Ausdruck plastischer Veränderungen durch die Langzeitmedikation mit Antipsychotika.

Summary

Post-mortem investigations have confirmed that glutamatergic NMDA, AMPA, and kainate receptors are involved in the pathophysiology of schizophrenia. It is still unclear, however, whether the altered number of receptors is caused by the disease itself or the medication. Therefore, animal models were investigated for effects of antipsychotic medication after treatment periods of up to 6 months, the results of which are summarized here.

Generally, NMDA receptor binding was found to be increased in striatum and nucleus accumbens after therapy with haloperidol, whereas clozapine only increased the number of receptors in nucleus accumbens. While haloperidol led to an increase in AMPA receptors in the posterior cingulate gyrus, striatum, insular cortex, and n. accumbens, clozapine was found to elevate ligand binding in the anterior cingulate gyrus and infralimbic cortex. Although kainate receptor binding was increased in hippocampus by both antipsychotics, clozapine was significantly more effective.

In conclusion, data reveal different effects from the typical neuroleptic haloperidol and the atypical antipsychotic clozapine. The results suggest that post-mortem findings in patients with schizophrenia may at least partially be explained by drug effects and plasticity changes induced by long-term medication with antipsychotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Akaike K, Tanaka S, Tojo H, Fukumoto S, Imamura S, Takigawa M (2001) Kainic acid-induced dorsal and ventral hippocampal seizures in rats. Brain Res 900:65–71

    Article  PubMed  Google Scholar 

  2. Aparicio-Legarza MI, Davis B, Hutson PH, Reynolds GP (1998) Increased density of glutamate/N-methyl-D-aspartate receptors in putamen from schizophrenic patients. Neurosci Lett 241:143–146

    Article  PubMed  Google Scholar 

  3. Bortolotto ZA, Clarke VR, Delany CM et al. (1999) Kainate receptors are involved in synaptic plasticity. Nature 402:297–301

    Article  PubMed  Google Scholar 

  4. Braus DF, Ende G, Weber-Fahr W, Demirakca T, Henn FA (2001) Favorable effect on neuronal viability in the anterior cingulate gyrus due to long-term treatment with atypical antipsychotics: an MRSI study. Pharmacopsychiatry 34:251–253

    PubMed  Google Scholar 

  5. Braus DF, Ende G, Weber-Fahr W, Demirakca T, Tost H, Henn FA (2002) Functioning and neuronal viability of the anterior cingulate neurons following antipsychotic treatment: MR-spectroscopic imaging in chronic schizophrenia. Eur Neuropsychopharmacol 12:145–152

    Article  PubMed  Google Scholar 

  6. Breese CR, Freedman R, Leonard SS (1995) Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res 674:82–90

    Article  PubMed  Google Scholar 

  7. Buchsbaum MS, Hazlett EA, Haznedar MM, Spiegel-Cohen J, Wei TC (1999) Visualizing fronto-striatal circuitry and neuroleptic effects in schizophrenia. Acta Psychiatr Scand [Suppl 395]:129–137

    Google Scholar 

  8. Bymaster FP, Calligaro DO, Falcone JF et al. (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96

    Article  CAS  PubMed  Google Scholar 

  9. Carlsson A, Hansson LO, Waters N, Carlsson ML (1997) Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sci 61:75–94

    Article  PubMed  Google Scholar 

  10. Carroll RC, Beattie EC, Xia H et al. (1999) Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc Natl Acad Sci U S A 96:14112–14117

    Article  PubMed  Google Scholar 

  11. Cha JH, Makowiec RL, Penney JB, Young AB (1992) Multiple states of rat brain (RS)-alpha-amino-3-hydroxy-5- methylisoxazole-4-propionic acid receptors as revealed by quantitative autoradiography. Mol Pharmacol 41:832–838

    PubMed  Google Scholar 

  12. Chakos MH, Lieberman JA, Alvir J, Bilder R, Ashtari M (1995) Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 345:456–457

    Article  Google Scholar 

  13. Contractor A, Swanson G, Heinemann SF (2001) Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29:209–216

    PubMed  Google Scholar 

  14. Cooper JR, Bloom FE, Roth RH (1996) The Biochemical Basis of Neuropharmacology. 7. Aufl. Oxford Univ Press, Oxford

  15. Cotman CW, Monaghan DT (1986) Anatomical organization of excitatory amino acid receptors and their properties. Adv Exp Med Biol 203:237–252

    PubMed  Google Scholar 

  16. Deakin JF, Slater P, Simpson MD et al. (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 52:1781–1786

    CAS  PubMed  Google Scholar 

  17. Dean B, Scarr E, Bradbury R, Copolov D (1999) Decreased hippocampal (CA3) NMDA receptors in schizophrenia. Synapse 32:67–69

    Article  PubMed  Google Scholar 

  18. Ding DC, Gabbott PL, Totterdell S (2001) Differences in the laminar origin of projections from the medial prefrontal cortex to the nucleus accumbens shell and core regions in the rat. Brain Res 917:81–89

    Article  PubMed  Google Scholar 

  19. Eastwood SL, Kerwin RW, Harrison PJ (1997) Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5- methyl-4-isoxazole propionate-preferring non-N-methyl-D-aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol Psychiatry 41:636–643

    Article  PubMed  Google Scholar 

  20. Falkai P, Vogeley K, Maier W (2001) [Structural brain changes in patients with schizophrenic psychoses. From focal pathology to network disorder]. Nervenarzt 72:331–341

    Article  PubMed  Google Scholar 

  21. Farber NB, Wozniak DF, Price MT, Labruyere J, Huss J, St Peter H, Olney JW (1995) Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia? Biol Psychiatry 38:788–796

    Article  PubMed  Google Scholar 

  22. Fedele E, Raiteri M (1996) Desensitization of AMPA receptors and AMPA-NMDA receptor interaction: an in vivo cyclic GMP microdialysis study in rat cerebellum. Br J Pharmacol 117:1133–1138

    PubMed  Google Scholar 

  23. Feinberg I (1982) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17:319–334

    Article  PubMed  Google Scholar 

  24. Filloux F, Liu TH, Hsu CY, Hunt MA, Wamsley JK (1988) Selective cortical infarction reduces [3H]sulpiride binding in rat caudate-putamen: autoradiographic evidence for presynaptic D2 receptors on corticostriate terminals. Synapse 2:521–531

    PubMed  Google Scholar 

  25. Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461

    PubMed  Google Scholar 

  26. Freed WJ, Dillon-Carter O, Kleinman JE (1993) Properties of [3H]AMPA binding in postmortem human brain from psychotic subjects and controls: increases in caudate nucleus associated with suicide. Exp Neurol 121:48–56

    Article  PubMed  Google Scholar 

  27. Grimwood S, Slater P, Deakin JF, Hutson PH (1999) NR2B-containing NMDA receptors are up-regulated in temporal cortex in schizophrenia. Neuroreport 10:461–465

    PubMed  Google Scholar 

  28. Healy DJ, Haroutunian V, Powchik P, Davidson M, Davis KL, Watson SJ, Meador-Woodruff JH (1998) AMPA receptor binding and subunit mRNA expression in prefrontal cortex and striatum of elderly schizophrenics. Neuropsychopharmacology 19:278–286

    Article  PubMed  Google Scholar 

  29. Healy DJ, Meador-Woodruff JH (1997) Clozapine and haloperidol differentially affect AMPA and kainate receptor subunit mRNA levels in rat cortex and striatum. Brain Res Mol Brain Res 47:331–338

    Article  PubMed  Google Scholar 

  30. Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci U S A 96:13432–13437

    CAS  PubMed  Google Scholar 

  31. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  32. Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    CAS  PubMed  Google Scholar 

  33. Jeste DV, Lohr JB, Eastham JH, Rockwell E, Caligiuri MP (1998) Adverse neurobiological effects of long-term use of neuroleptics: human and animal studies. J Psychiatr Res 32:201–214

    CAS  PubMed  Google Scholar 

  34. Kerns JM, Sierens DK, Kao LC, Klawans HL, Carvey PM (1992) Synaptic plasticity in the rat striatum following chronic haloperidol treatment. Clin Neuropharmacol 15:488–500

    CAS  PubMed  Google Scholar 

  35. Kerwin R, Patel S, Meldrum B (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39:25–32

    Article  PubMed  Google Scholar 

  36. Konradi C, Heckers S (2001) Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 50:729–742

    Article  PubMed  Google Scholar 

  37. Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989) [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77:231–236

    CAS  PubMed  Google Scholar 

  38. Korpi ER, Wong G, Luddens H (1995) Subtype specificity of gamma-aminobutyric acid type A receptor antagonism by clozapine. Naunyn Schmiedebergs Arch Pharmacol 352:365–373

    PubMed  Google Scholar 

  39. Lipton SA, Kater SB (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci 12:265–270

    Article  PubMed  Google Scholar 

  40. Mattson MP, Lee RE, Adams ME, Guthrie PB, Kater SB (1988) Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1:865–876

    PubMed  Google Scholar 

  41. Maura G, Giardi A, Raiteri M (1988) Release-regulating D-2 dopamine receptors are located on striatal glutamatergic nerve terminals. J Pharmacol Exp Ther 247:680–684

    PubMed  Google Scholar 

  42. McCoy L, Cox C, Richfield EK (1998) Antipsychotic drug regulation of AMPA receptor affinity states and GluR1, GluR2 splice variant expression. Synapse 28:195–207

    Article  PubMed  Google Scholar 

  43. McDonald JW, Johnston MV (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Brain Res Rev 15:41–70

    PubMed  Google Scholar 

  44. Meador-Woodruff JH, King RE, Damask SP, Bovenkerk KA (1996) Differential regulation of hippocampal AMPA and kainate receptor subunit expression by haloperidol and clozapine. Mol Psychiatry 1:41–53

    PubMed  Google Scholar 

  45. Meshul CK, Bunker GL, Mason JN, Allen C, Janowsky A (1996) Effects of subchronic clozapine and haloperidol on striatal glutamatergic synapses. J Neurochem 67:1965–1973

    CAS  PubMed  Google Scholar 

  46. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    CAS  PubMed  Google Scholar 

  47. Noga JT, Hyde TM, Herman MM, Spurney CF, Bigelow LB, Weinberger DR, Kleinman JE (1997) Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 27:168–176

    Article  CAS  PubMed  Google Scholar 

  48. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    CAS  PubMed  Google Scholar 

  49. Ossowska K, Pietraszek M, Wardas J, Nowak G, Wolfarth S (1999) Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats. Naunyn Schmiedebergs Arch Pharmacol 359:280–287

    CAS  PubMed  Google Scholar 

  50. Petitet F, Blanchard JC, Doble A (1995) Effects of non-NMDA receptor modulators on [3H] dopamine release from rat mesencephalic cells in primary culture. J Neurochem 64:1410–1412

    PubMed  Google Scholar 

  51. Scarr E, Pavey G, Robinson PJ, Opeskin K, Copolov DL, Dean B (2002) Decreased phorbol ester binding in the parahippocampal gyrus from subjects with schizophrenia is not associated with changes in protein kinase C. Mol Psychiatry 7:683–688.

    Article  PubMed  Google Scholar 

  52. Schmitt A, Weber-Fahr W, Jatzko A, Tost H, Henn FA, Braus DF (2001) Aktueller Überblick über strukturelle Magnetresonanztomographie bei Schizophrenie. Fortschr Neurol Psychiatr 69:105–115

    Article  PubMed  Google Scholar 

  53. Schmitt A, Zink M, Müller B et al. (2003) Effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits. Neurochemical Res 28:235–241

    Article  Google Scholar 

  54. See RE, Chapman MA (1994) Chronic haloperidol, but not clozapine, produces altered oral movements and increased extracellular glutamate in rats. Eur J Pharmacol 263:269–276

    CAS  PubMed  Google Scholar 

  55. Smith DO, Lowe D, Temkin R, Jensen P, Hatt H (1995) Dopamine enhances glutamate-activated currents in spinal motoneurons. J Neurosci 15:3905–3912

    PubMed  Google Scholar 

  56. Spurney CF, Baca SM, Murray AM, Jaskiw GE, Kleinman JE, Hyde TM (1999) Differential effects of haloperidol and clozapine on ionotropic glutamate receptors in rats. Synapse 34:266–276

    Article  CAS  PubMed  Google Scholar 

  57. Standley S, Tocco G, Wagle N, Baudry M (1998) High- and low-affinity alpha-[3H]amino-3-hydroxy-5-methylisoxazole-4- propionic acid ([3H]AMPA) binding sites represent immature and mature forms of AMPA receptors and are composed of differentially glycosylated subunits. J Neurochem 70:2434–2445

    PubMed  Google Scholar 

  58. Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA- receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31:320–329

    PubMed  Google Scholar 

  59. Toru M, Watanabe S, Shibuya H et al. (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 78:121–137

    CAS  PubMed  Google Scholar 

  60. Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155:1207–1213

    CAS  PubMed  Google Scholar 

  61. Turrigiano GG (2000) AMPA receptors unbound: membrane cycling and synaptic plasticity. Neuron 26:5-8

    CAS  PubMed  Google Scholar 

  62. Yamamoto BK, Cooperman MA (1994) Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 14:4159–4166

    CAS  Google Scholar 

  63. Yamamoto BK, Davy S (1992) Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 58:1736–1742

    PubMed  Google Scholar 

  64. Zilles K, Wu J, Crusio WE, Schwegler H (2000) Water maze and radial maze learning and the density of binding sites of glutamate, GABA, and serotonin receptors in the hippocampus of inbred mouse strains. Hippocampus 10:213–225

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, A., May, B., Müller, B. et al. Die Wirkung von Antipsychotika auf glutamaterge Neurotransmission im Tiermodell. Nervenarzt 75, 16–22 (2004). https://doi.org/10.1007/s00115-003-1593-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-003-1593-3

Schlüsselwörter

Keywords

Navigation