Skip to main content
Log in

Modelling the effects of climate and land-cover changes on the potential distribution and landscape connectivity of three earth snakes (Genus Conopsis, Günther 1858) in central Mexico

  • Original Article
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Anthropogenic land use and climate change are the greatest threats to biodiversity, especially for many globally endangered reptile species. Earth snakes (Conopsis spp.) are a poorly studied group endemic to Mexico. They have limited dispersal abilities and specialized niches, making them particularly vulnerable to anthropogenic threats. Species distribution models (SDMs) were used to assess how future climate and land-cover change scenarios might influence the distribution and habitat connectivity of three earth snakes: Conopsis biserialis (Taylor and Smith), C. lineata (Kennicott), and C. nasus (Günther). Two climate models, CNRM-CM5 (CN) and MPI-ESM-LR (MP) (Representative Concentration Pathway 85), were explored with ENMeval Maxent modelling. Important SDM environmental variables and environmental niche overlap between species were also examined. We found that C. biserialis and C. lineata were restricted by maximum temperatures whereas C. nasus was restricted by minimum ones and was more tolerant to arid vegetation. C. biserialis and C. lineata were primarily distributed in the valleys and mountains of the highlands of the TMBV, while C. nasus was mainly distributed in the Altiplano Sur (Zacatecano-Potosino). C. lineata had the smallest potential distribution and suffered the greatest contraction in the future whereas C. nasus was the least affected species in future scenarios. The Sierra de las Cruces and the Sierra Chichinautzin were identified as very important areas for connectivity. Our results suggest that C. lineata may be the most vulnerable of the three species to anthropogenic and climate changes whereas C. nasus seems to be less affected by global warming than the other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Google Scholar 

  • Ansari A, Golabi MH (2019) Prediction of spatial land-use changes based on LCM in a GIS environment for Desert Wetlands–a case study: Meighan Wetland, Iran. Int Soil Water Conserv Res 7(1):64–70

    Google Scholar 

  • Antunes B, Velo-Antón G, Buckley D, Pereira RJ, Martínez-Solano I (2021) Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies. Heredity 126(5):776–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688

    Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell 222(11):1810–1819

    Google Scholar 

  • Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, Rouault E, Bivand MR (2017) Package ‘rgdal’. Bindings for the Geospatial Data Abstraction Library. Available online: https://cran.r-project.org/web/packages/rgdal/index.html. Accessed 15 Oct 2020

  • Blouin-Demers G, Weatherhead PJ (2001) An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta obsoleta. J Anim Ecol 70(6):1006–1013

    Google Scholar 

  • Böhm M, Cook D, Ma H, Davidson AD, García A, Tapley B, Pearce-Kelly P, Carr J (2016) Hot and bothered: using trait-based approaches to assess climate change vulnerability in reptiles. Biol Conserv 204:32–41

    Google Scholar 

  • Bolom-Huet R, Pacheco XP, Muñoz-Alonso A, Sunny A (2022) Potential distribution and connectivity in two plethodontid salamanders: conservation areas and landscape corridors for two endemic species. Environ Manage 70(6):965–977

    PubMed  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Modell 275:73–77

    Google Scholar 

  • Burnham KP, Anderson DR (2002) A practical information-theoretic approach. Model selection and multimodel inference. pp. 75–117. Springer, New York, NY.

  • Canseco-Márquez L, Mendoza-Quijano F, Flores-Villela O (2007) Conopsis lineata. The IUCN Red List of Threatened Species 2007: e.T63763A12706720. https://doi.org/10.2305/IUCN.UK.2007.RLTS.T63763A12706720.en. Accessed 26 May 2022

  • Canseco-Márquez L, Mendoza-Quijano F, Ponce-Campos P (2007) Conopsis biserialis. The IUCN Red List of Threatened Species 2007: e.T63762A12706543. https://doi.org/10.2305/IUCN.UK.2007.RLTS.T63762A12706543.en. Accessed 26 May 2022

  • Carroll C, McRae BH, Brookes A (2012) Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv Biol 26(1):78–87

    PubMed  Google Scholar 

  • Castaneda-Gonzalez O, Manjarrez J, Goyenechea I, Fajardo V (2011) Ecology of a population of the earthsnake Conopsis biserialis in the Mexican Transvolcanic Axis. Herpetol Conserv Biol 3:364–371

    Google Scholar 

  • Chiu-Valderrama JI, Siurob-Espíndola BE, Zúñiga-Vega JJ, de la Vega-Pérez AD, Canales-Gordillo B, Jaramillo-Alba JL, Akcali CK, Cuervo-Robayo AP, Perez-Mendoza HA (2022) Nowhere to go: potential distribution shifts of a widespread lizard under two climate change scenarios. Ecol Inform 70:101735

    Google Scholar 

  • Clark Labs (2020) IDRISI TerrSet. Clark University 950 Main St., Worcester MA 01610 USA

  • Combrink LL, Bronikowski AM, Miller DAW, Sparkman AM (2021) Current and time-lagged effects of climate on innate immunity in two sympatric snake species. Ecol Evol 11(7):3239–3250. https://doi.org/10.1002/ece3.7273

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox N, Young BE, Bowles P, Fernandez M, Marin J, Rapacciuolo G, Böhm M, Brooks TM, Hedges SB, Hilton-Taylor C, Hoffmann M (2022) A global reptile assessment highlights shared conservation needs of tetrapods. Nature 605(7909):285–290

  • Cushman SA, McRae B, Adriaensen F, Beier P, Shirley M, Zeller K (2013) Biological corridors and connectivity [Chapter 21]. In: Macdonald, DW; Willis, KJ, eds. Key Topics in Conservation Biology 2. Hoboken, NJ: Wiley-Blackwell. pp. 384–404

  • Diario Oficial de la Federación (2010) Norma Oicial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de lora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Available at http://dof.gob.mx/nota_detalle_popup.php?codigo=5173091. Accessed 26 May 2022

  • Doonan TJ, Slade NA (1995) Effects of supplemental food on population dynamics of cotton rats. Sigmodon Hispidus Ecol 76(3):814–826

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitao PJ, Münkemüller T (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Google Scholar 

  • Dutta T, Sharma S, McRae BH, Roy PS, DeFries R (2016) Connecting the dots: mapping habitat connectivity for tigers in central India. Reg Environ Change 16(1):53–67

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Google Scholar 

  • Flores-Villela O, Gerez P (1994) Biodiversidad y conservación en México: vertebrados, vegetación y uso del suelo, 2nd edn. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad and Universidad Nacional Autónoma de México, Distrito Federal, México

  • Flores-Villela O, García-Vázquez UO (2014) Biodiversity of reptiles in Mexico. Rev Mex Biodivers 85:S467–S475

    Google Scholar 

  • Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr 27(2):245–256

    Google Scholar 

  • Gibson L, Münch Z, Palmer A, Mantel S (2018) Future land cover change scenarios in South African grasslands–implications of altered biophysical drivers on land management. Heliyon 4(7):e00693

    PubMed  PubMed Central  Google Scholar 

  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2017) Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Model Earth Syst Environ 3(4):1245–1262

    Google Scholar 

  • Glor RE, Warren D (2011) Testing ecological explanations for biogeographic boundaries. Evol; Int J Org 65(3):673–683

    Google Scholar 

  • Gómez-Benitez A, Loza CAM, Rodríguez ASV, Rheubert JL, Gallegos OH (2021) Spatial-temporal activity patterns of the Mexican Plateau Horned lizard in a natural protected area. J Herpetol 55(3):271–278

    Google Scholar 

  • González-Fernández A, Manjarrez J, García-Vázquez U, D’Addario M, Sunny A (2018) Present and future ecological niche modeling of garter snake species from the Trans-Mexican Volcanic Belt. PeerJ 6:e4618

    PubMed  PubMed Central  Google Scholar 

  • González-Fernández A, González-Salazar C, Sunny A, Ruíz-Gutiérrez F, Chávez C (2022) Determination of priority areas for amphibian conservation in Guerrero (Mexico), through systematic conservation planning tools. J Nat Conserv 68:126235

    Google Scholar 

  • Goodyear SE, Pianka ER (2008) Sympatric ecology of five species of fossorial snakes (Elapidae) in Western Australia. J Herpetol 42(2):279–285

    Google Scholar 

  • Goyenechea I (2009) Relaciones filogenéticas de las serpientes del género Conopsis con base en la morfología. Rev Mex Biodivers 80(3):721–725

    Google Scholar 

  • Goyenechea I, Flores-Villela O (2006) Taxonomic summary of Conopsis, Günther, 1858 (Serpentes: Colubridae). Zootaxa 1271(1):1–27

    Google Scholar 

  • Günther A (1858) Catalogue of colubrine snakes in the collection of the British Museum. Alden and Mowbray Ltd., Alden Press, Oxford, p 281

    Google Scholar 

  • Hall KR, Anantharaman R, Landau VA, Clark M, Dickson BG, Jones A, Platt J, Edelman A, Shah VB (2021) Circuitscape in julia: empowering dynamic approaches to connectivity assessment. Land 10(3):301

    Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    CAS  PubMed  Google Scholar 

  • Hasan S, Shi W, Zhu X, Abbas S, Khan HUA (2020) Future simulation of land-use changes in rapidly urbanizing South China based on land change modeler and remote sensing data. Sustainability 12(11):4350

    Google Scholar 

  • Hidalgo HG, Alfaro EJ (2015) Skill of CMIP5 climate models in reproducing 20th century basic climate features in Central America. Int J Climatol 35(12):3397–3421

    Google Scholar 

  • Hijmans RJ (2023) Raster: geographic data analysis and modeling. R package version 3.6-23

  • Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Modell 145(2–3):111–121

    Google Scholar 

  • Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Assessing the fit of the model, Chapter 5. Applied logistic regression. John Wiley & Sons Inc, Hoboken, New Jersey, pp 153–225

    Google Scholar 

  • Hoss SK, Guyer C, Smith LL, Schuett GW (2010) Multiscale influences of landscape composition and configuration on the spatial ecology of eastern diamond-backed rattlesnakes (Crotalus adamanteus). J Herpetol 44(1):110–123

    Google Scholar 

  • How RA, Shine R (1999) Ecological traits and conservation biology of five fossorial ‘sand-swimming’ snake species (Simoselaps: Elapidae) in south-western Australia. J Zool 249(3):269–282

    Google Scholar 

  • Huey RB, Peterson CR, Arnold SJ, Porter WP (1989) Hot rocks and not-so-hot rocks: retreat-site selection by garter snakes and its thermal consequences. Ecology 70(4):931–944

    Google Scholar 

  • INEGI, Instituto Nacional de Estadística y Geografía (2017) Conjunto de datos vectoriales de Uso del Suelo y Vegetación. Serie VI. (Capa Unión). Escala 1: 250 000. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463173359. Accessed 26 May 2022

  • INEGI, Instituto Nacional de Estadística y Geografía (2011) Conjunto de datos vectoriales de la carta de Uso del suelo y vegetación. Escala 1: 250,000. Serie V (Continuo Nacional). https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825567828. Accessed 26 May 2022

  • Kamworapan S, Surussavadee C (2019) Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Adv Meteorol 1–18.

  • Kapfer JM, Muñoz DJ, Groves JD, Kirk RW (2013) Home range and habitat preferences of eastern box turtles (Terrapene carolina Linnaeus, 1758) in the Piedmont Ecological Province of North Carolina (USA). Herpetol Notes 6:251–260

    Google Scholar 

  • Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M, Anderson RP (2021) ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol Evol 12(9):1602–1608

    Google Scholar 

  • Kennicott R (1859) In: Baird. Report on the United States and Mexican boundary survey. Reptiles 2:23–24

    Google Scholar 

  • Khan MZ, Law FC (2005) Adverse effects of pesticides and related chemicals on enzyme and hormone systems of fish, amphibians and reptiles: a review. Proc Pak Acad 42(4):315–323

    Google Scholar 

  • Krochmal AR, Bakken GS (2003) Thermoregulation is the pits: use of thermal radiation for retreat site selection by rattlesnakes. J Exp Biol 206(15):2539–2545

    PubMed  Google Scholar 

  • Lara-Reséndiz RA, Galina-Tessaro P, Sinervo B, Miles DB, Valdez-Villavicencio JH, Valle-Jiménez FI, Méndez-de La Cruz FR (2021) How will climate change impact fossorial lizard species? Two examples in the Baja California Peninsula. J Therm Biol 95:102811

    PubMed  Google Scholar 

  • Luiselli L (2006) Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114(2):193–211

    Google Scholar 

  • Macartney JM, Gregory PT, Larsen KW (1988) A tabular survey of data on movements and home ranges of snakes. J Herpetol 61–73

  • Markle TM, Kozak KH (2018) Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change. Ecol Evol 8(9):4644–4656

    PubMed  PubMed Central  Google Scholar 

  • Mas JF, Kolb M, Paegelow M, Olmedo MC, Houet T (2014) Modelling Land use/cover changes: a comparison of conceptual approaches and softwares. Environ Model Softw 51:94–111

    Google Scholar 

  • Mateo-Sánchez MC, Cushman SA, Saura S (2014) Connecting endangered brown bear subpopulations in the Cantabrian Range (north-western Spain). Anim Conserv 17(5):430–440

    Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    PubMed  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    CAS  PubMed  PubMed Central  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724

    PubMed  Google Scholar 

  • McRae BH (2012a) Centrality mapper connectivity analysis software. The Nature Conservancy, Seattle, Washington, USA

  • McRae BH (2012b) Barrier mapper connectivity analysis software. The Nature Conservancy, Seattle, Washington, USA

  • McRae BH, Kavanagh DM (2011) Linkage Mapper connectivity analysis software. The Nature Conservancy, Seattle, Washington, USA

  • Metz CE (1978) Basic principles of ROC analysis. In Seminars in nuclear medicine (Vol. 8, No. 4, pp. 283–298). WB Saunders

  • Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst Jovan Cvijic SASA 64(1):111–127

    Google Scholar 

  • Müller K, Steinmeier C, Küchler M (2010) Urban growth along motorways in Switzerland. Landsc Urban Plan 98(1):3–12

    Google Scholar 

  • Naimi B (2017) R package usdm: uncertainty analysis for species distribution models. Available at: http://cran.r-project.org/web/packages/usdm/usdm.pdf.  Accessed 26 May 2022

  • Ochoa-Ochoa LM, Flores-Villela O (2006) Áreas de diversidad y endemismo de la herpetofauna Mexicana. UNAM-CONABIO, México, DF, Mexico

    Google Scholar 

  • Osorio-Olvera L, Lira-Noriega A, Soberón J, Peterson AT, Falconi M, Contreras-Díaz RG, Martínez-Meyer E, Barve V, Barve N (2020) ntbox: an r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol Evol 11(10):1199–1206

    Google Scholar 

  • Overington SE, Dubois F, Lefebvre L (2008) Food unpredictability drives both generalism and social foraging: a game theoretical model. Behav Ecol 19(4):836–841

    Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Modell 213(1):63–72

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190(3–4):231–259

    Google Scholar 

  • Phillips SJ (2021) A brief tutorial on Maxent. https://biodiversityinformatics.amnh.org/open_source/maxent/Maxent_tutorial_2021.pdf. Accessed 26 May 2022

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org [on May 18, 2019]

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41(4):629–643

    Google Scholar 

  • Ramírez-Bautista, A, Arizmendi MC (2004) Conopsis biserialis. Sistemática e historia natural de algunos anibios y reptiles de México. – Facultad de Estudios Superiores Iztacala, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Universidad Nacional Autónoma de México. Bases de datos SNIB-CONABIO. Proyecto W013. México. D.F.

  • Raya-García E, Alvarado-Díaz J, Suazo-Ortuño I (2016) Litter size and relative clutch mass of the earthsnakes Conopsis biserialis and C. nasus (Serpentes: Colubridae) from the central Mexican Transvolcanic Axis. Salamandra 52:217–220

    Google Scholar 

  • Raya-García E, Alvarado-Díaz J, Suazo-Ortuño I (2020a) Influence of prey scent on chemosensory behavior of two fossorial earthsnakes: Conopsis biserialis and Conopsis nasus (Serpentes: Colubridae). J Herpetol 54(4):460–464

    Google Scholar 

  • Raya-García E, Alvarado-Díaz J, Suazo-Ortuño I, Lopez-Toledo L (2020b) Chemosensory responses in newborns of the fossorial earthsnake Conopsis biserialis (Serpentes: Colubridae) to potential invertebrate prey scents. Salamandra 56(1):87–90

    Google Scholar 

  • Raya-Garcia E, Alvarado-Diaz J, Martín Rueda J (2019) Foraging cues and thermal environments influence retreat site selection in fossorial earthsnakes. Herpetol Conserv Biol 14(3):560–567

    Google Scholar 

  • Reagan DP (1974) Habitat selection in the three-toed box turtle, Terrapene carolina triunguis. Copeia 512–527

  • Robinson BW, Wilson DS (1998) Optimal foraging, specialization, and a solution to Liem’s paradox. Am Nat 151(3):223–235

    CAS  PubMed  Google Scholar 

  • Rödder D, Engler JO (2011) Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Glob Ecol Biogeogr 20(6):915–927

    Google Scholar 

  • Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, Böhm M, Castro-Herrera F, Chirio L, Collen B, Colli GR (2017) The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol 1(11):1677–1682

    PubMed  Google Scholar 

  • Rugiero L, Milana G, Petrozzi F, Capula M, Luiselli L (2013) Climate-change-related shifts in annual phenology of a temperate snake during the last 20 years. Acta Oecol 51:42–48. https://doi.org/10.1016/j.actao.2013.05.005

    Article  Google Scholar 

  • Schoener TW (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51(3):408–418

    Google Scholar 

  • Segurado PAGE, Araujo MB, Kunin WE (2006) Consequences of spatial autocorrelation for niche-based models. J Appl Ecol 43(3):433–444

    Google Scholar 

  • Seigel RA (1993a) Summary: future research on snakes, or how to combat “lizard envy.” Pp. 395-402 In Snakes: ecology and behavior. Siegel RA and Collins JT (Eds.). McGraw-Hill, New York, New York, USA

  • Seigel RA, Collins JT (1993) Snakes: ecology and behavior. McGraw-Hill New York, New York, USA

    Google Scholar 

  • Shine R, Sun LX, Kearney M, Fitzgerald M (2002) Thermal correlates of foraging-site selection by Chinese pit-vipers (Gloydius shedaoensis, Viperidae). J Therm Biol 27(5):405–412

    Google Scholar 

  • Sunny A, Monroy-Vilchis O, Zarco-González MM, Mendoza-Martínez GD, Martínez-Gómez D (2015) Genetic diversity and genetic structure of an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified agricultural landscape: implications for conservation. Genetica 143(6):705–716

    PubMed  Google Scholar 

  • Sunny A, González-Fernández A, D’Addario M (2017) Potential distribution of the endemic imbricate alligator lizard (Barisia imbricata imbricata) in highlands of central Mexico. Amphibia-Reptilia 38(2):225–231

    Google Scholar 

  • Sunny A, Monroy-Vilchis O, Zarco-González MM (2018) Genetic diversity and structure of Crotalus triseriatus, a rattlesnake of central Mexico. J Genet 97(5):1119–1130

    PubMed  Google Scholar 

  • Sunny A, Gandarilla-Aizpuro FJ, Monroy-Vilchis O, Zarco-Gonzalez MM (2019) Potential distribution and habitat connectivity of Crotalus triseriatus in Central Mexico. Herpetozoa 32:139–148

    Google Scholar 

  • Sunny A, López-Sánchez M, Ramírez-Corona F, Suárez-Atilano M, González-Fernández A (2022) Genetic diversity and functional connectivity of a critically endangered salamander. Biotropica 54(1):42–56

    Google Scholar 

  • Taylor EH, Smith HM (1942) The snake genera Conopsis and Toluca. University of Kansas

  • Tsairi H, Bouskila A (2004) Ambush site selection of a desert snake (Echis coloratus) at an oasis. Herpetologica 60(1):13–23

    Google Scholar 

  • Uetz P, Freed P, Aguilar R, Hošek J (eds.) (2021) The Reptile Database, http://www.reptile-database.org, accessed November 11, 2021

  • Uetz P, Freed P, Aguilar R, Hošek J (eds.) (2022) The Reptile Database, http://www.reptile-database.org, accessed May 26, 2022

  • Uribe-Peña Z, Ramírez-Bautista A, Casas-Andreu G (1999) Anfibios y Reptiles de las Serranías del Distrito Federal, México. Cuadernos del Instituto de Biología 32. Universidad Nacional Autónoma de México, Distrito Federal, México

  • Vaissi S (2022) Response of Iranian lizards to future climate change by poleward expansion, southern contraction, and elevation shifts. Sci Rep 12(1):1–21

    Google Scholar 

  • Vargas-Jaimes J, González-Fernández A, Torres-Romero EJ, Bolom-Huet R, Manjarrez J, Gopar-Merino F, Pacheco XP, Garrido-Garduño T, Chávez C, Sunny A (2021) Impact of climate and land cover changes on the potential distribution of four endemic salamanders in Mexico. J Nat Conserv 64:126066

    Google Scholar 

  • Vasquez-Díaz J, Quintero-Díaz GE (2007) Conopsis nasus. The IUCN Red List of Threatened Species 2007: e.T63765A12706882. https://doi.org/10.2305/IUCN.UK.2007.RLTS.T63765A12706882.en. Accessed 26 May 2022

  • Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal- limited species: reduced spatial and genetic connectivity in a montane salamander. Mole Ecol 22:3261–3278

    Google Scholar 

  • Wang R, Murayama Y (2017) Change of land use/cover in Tianjin city based on the markov and cellular automata models. ISPRS Int J Geoinf 6(5):150

    Google Scholar 

  • Wanger TC, Brook BW, Evans T, Tscharntke T (2023) Pesticides reduce tropical amphibian and reptile diversity in agricultural landscapes in Indonesia. PeerJ 11:e15046

    PubMed  PubMed Central  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol; Int J Org Evol 62(11):2868–2883

    Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611

    Google Scholar 

  • Warren DL, Matzke NJ, Cardillo M, Baumgartner JB, Beaumont LJ, Turelli M, Glor RE, Huron NA, Simões M, Iglesias TL, Piquet JC (2021) ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44(4):504–511

    Google Scholar 

  • Webb JK, Shine R (1998) Using thermal ecology to predict retreat-site selection by an endangered snake species. Biol Conserv 86(2):233–242

    Google Scholar 

  • Wilson LD, Mata-Silva V, Johnson JD (2013) A conservation reassessment of the reptiles of Mexico based on the EVS measure. Amphib Reptile Conserv 7(1):1–47

    Google Scholar 

  • Yamamichi M, Kyogoku D, Iritani R, Kobayashi K, Takahashi Y, Tsurui-Sato K, Yamawo A, Dobata S, Tsuji K, Kondoh M (2020) Intraspecific adaptation load: a mechanism for species coexistence. Trends Ecol Evol 35(10):897–907

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and two anonymous reviewers for their comments. We thank Laura Gilchrist for the English review. This paper was completed while R.B.H was on his postdoctoral stay at UAEMex (CONACYT: I1200/94/2020), R.B.H was on his postdoctoral stay at UAEMex (CONACYT: 2995280/94/2022), A.G.F is on her postdoctoral stay at Universidad Nacional Autónoma de México (UNAM), receiving a scholarship from UNAM (CJIC/CTIC/5052/2021).

Funding

This work was supported by the Secretary of Research and Advanced Studies (SYEA) of the Universidad Autónoma del Estado de México (Grant to AS: 4732/2019CIB). A. S: Adahy Olun Contreras-García estoy haciendo todo por volverte a ver, mi amado hijo, espero pronto poder estar contigo de nuevo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Sunny.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by: Pedro Henrique Dias

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6017 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunny, A., Manjarrez, J., Caballero-Viñas, C. et al. Modelling the effects of climate and land-cover changes on the potential distribution and landscape connectivity of three earth snakes (Genus Conopsis, Günther 1858) in central Mexico. Sci Nat 110, 52 (2023). https://doi.org/10.1007/s00114-023-01880-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-023-01880-7

Keywords

Navigation