Skip to main content

Short-term plasticity and variation in acacia ant-rewards under different conditions of ant occupancy and herbivory

Abstract

In ant–plant defense mutualisms, plants known as myrmecophytes provide food and shelter to ant partners in exchange for defense against herbivores and pathogens. To ensure interaction pay-off, myrmecophytes must regulate their investment in ant-rewards depending on local conditions and herbivore pressure. We investigated how myrmecophyte investment in multiple ant-rewards relates to herbivory, ant defense, and ant occupancy over time. Specifically, we examined the plasticity of ant-rewards produced by swollen-thorn acacias (Vachellia collinsii) under different ant occupancy and herbivory conditions. We compared food rewards (number of extrafloral nectaries and pinnules as a proxy for food bodies) and housing rewards (domatia dimensions) of V. collinsii for three conditions: (1) occupied (defended by the obligate mutualist Pseudomyrmex spinicola) versus unoccupied trees, (2) occupied trees subject to an experimental herbivory manipulation versus control trees, and (3) trees occupied by different ant species varying in their level of defense (P. spinicola, P. simulans, Crematogaster crinosa). We found that food rewards were more likely to vary in time depending on ant occupancy and resident species. Conversely, housing rewards varied with the condition (occupancy or species of partner) and less through time. A one-time herbivory manipulation did not cause any changes to the ant-rewards produced. Our results reveal short-term plasticity in V. collinsii ant-rewards and demonstrate that myrmecophytes with constitutive rewards can adjust their investment in ant-rewards depending on the presence and identity of ant partners.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Dataset and code available at Figshare https://doi.org/10.25573/data.13344455.

References

  1. Aljbory Z, Chen MS (2018) Indirect plant defense against insect herbivores: a review. Insect Sci 25:2–23. https://doi.org/10.1111/1744-7917.12436

    CAS  Article  PubMed  Google Scholar 

  2. Alves-Silva E, Del-Claro K (2013) Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant–plant–herbivore interactions. Naturwissenschaften 100(6):525–532. https://doi.org/10.1007/s00114-013-1048-z

    CAS  Article  PubMed  Google Scholar 

  3. Alves-Silva E, Del-Claro K (2016) Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol Evol 149:73–80

    Article  Google Scholar 

  4. Amador-Vargas S, Dyer J, Arnold N, Cavanaugh L, Sánchez-Brenes E (2020) Acacia trees with parasitic ants have fewer and less spacious spines than trees with mutualistic ants. Sci Nat 107:3. https://doi.org/10.1007/s00114-019-1647-4

    CAS  Article  Google Scholar 

  5. Amador-Vargas S, Orribarra VS, Portugal-Loayza A, Fernández-Marín H (2021) Association patterns of acacia plants with three ant species and related organisms in a dry forest of Panama. Biotropica 53:560–566. https://doi.org/10.1111/btp.12899

    Article  Google Scholar 

  6. Arimura GI (2021) Making sense of the way plants sense herbivores. Trends Plant Sci 26(3):288–298. https://doi.org/10.1016/j.tplants.2020.11.001

    CAS  Article  PubMed  Google Scholar 

  7. Barton KE (2016) Tougher and thornier: general patterns in the induction of physical defence traits. Funct Ecol 30:181–187. https://doi.org/10.1111/1365-2435.12495

    Article  Google Scholar 

  8. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed- effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  9. Calixto ES, Lange D, Del-Claro K (2018) Protection mutualism: an overview of ant–plant interactions mediated by extrafloral nectaries. Oecologia Australis 22:410–425

    Article  Google Scholar 

  10. Calixto ES, Lange D, Bronstein J, Torezan-Silingardi HM, Del-Claro K (2020) Optimal Defense Theory in an ant–plant mutualism: extrafloral nectar as an induced defence is maximized in the most valuable plant structures. J Ecol 00:1–12. https://doi.org/10.1111/1365-2745.13457

    CAS  Article  Google Scholar 

  11. Chomicki G, Renner SS (2015) Phylogenetics and molecular clocks reveal the repeated evolution of ant-plants after the late Miocene in Africa and the early Miocene in Australasia and the Neotropics. New Phytol 207:411–424. https://doi.org/10.1111/nph.13271

    Article  PubMed  Google Scholar 

  12. Chomicki G, Ward PS, Renner SS (2015) Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proc R Soc B Biol Sci 282:2015–2200

    Google Scholar 

  13. Díaz M, Pulido FJ, Møller AP (2004) Herbivore effects on developmental instability and fecundity of holm oaks. Oecologia 139(2):224–234. https://doi.org/10.1007/s00442-004-1491-9

    Article  PubMed  Google Scholar 

  14. Fonseca CR (1993) Nesting space limits colony size of the plant-ant Pseudomyrmex concolor. Oikos 67(3):473–482. https://doi.org/10.2307/3545359

    Article  Google Scholar 

  15. Frederickson ME, Ravenscraft A, Miller GA, Hernandez LMA, Booth G, Pierce NE (2012) The direct and ecological costs of an ant–plant symbiosis. Am Nat 179:768–778

    Article  Google Scholar 

  16. González-Teuber M, Heil M (2015) Comparative anatomy and physiology of myrmecophytes: ecological and evolutionary perspectives. Res Rep Biodivers Stud 4:21–32. https://doi.org/10.2147/RRBS.S60420

    Article  Google Scholar 

  17. González-Teuber M, Bueno J, Heil M, Boland W (2012) Increased host investment in extrafloral nectar (EFN) improves the efficiency of a mutualistic defensive service. PLoS One 7:e46598. https://doi.org/10.1371/journal.pone.0046598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Heil M (2013) Let the best one stay: screening of ant defenders by Acacia host plants functions independently of partner choice or host sanctions. J Ecol 101:684–688. https://doi.org/10.1111/1365-2745.12060

    Article  Google Scholar 

  19. Heil M, Fiala B, Linsenmair KE, Zotz G, Menke P, Maschwitz U (1997) Food body production in Macaranga triloba (Euphorbiaceae): a plant investment in anti-herbivore defence via symbiotic ant partners. J Ecol 85:847–861. https://doi.org/10.2307/2960606

    Article  Google Scholar 

  20. Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair K (2001a) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98(3):1083–1088. https://doi.org/10.1073/pnas.031563398

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Heil M, Fiala B, Baumann B, Linsenmair K (2001b) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol 14:749–757. https://doi.org/10.1046/j.1365-2435.2000.00480.x

    Article  Google Scholar 

  22. Heil M, González-Teuber M, Clement LW, Kautz S, Verhaagh M, Bueno JCS (2009) Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc Natl Acad Sci 106:18091–18096

    CAS  Article  Google Scholar 

  23. Huntzinger M, Karban R, Young T, Palmer T (2004) Relaxation of induced indirect defenses of acacias following removal of mammalian herbivores. Rep Ecol 85:609–614. https://doi.org/10.1890/03-3056

    Article  Google Scholar 

  24. Janzen DH (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution 20(3):249–275. https://doi.org/10.2307/2406628

    Article  PubMed  Google Scholar 

  25. Janzen DH (1967) Interaction of the Bull’s Horn acacia (Acacia cornigera L.) with an ant inhabitant (Pseudomyrmex ferruginea F. Smith) in eastern Mexico. Univ Kansas Sci Bull 57:315–558

    Google Scholar 

  26. Janzen DH (1974) Swollen-thorn acacias of Central America. Smithson Contrib Bot 13:1–13. https://doi.org/10.5479/si.0081024X

    Article  Google Scholar 

  27. Janzen DH (1975) Pseudomyrmex nigropilosa: a parasite of a mutualism. Science 188(4191):936–937. https://doi.org/10.1126/science.188.4191.936

    CAS  Article  PubMed  Google Scholar 

  28. Labandeira C (2007) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci 14:259–275. https://doi.org/10.1111/j.1744-7917.2007.00141.x-i1

    Article  Google Scholar 

  29. Letourneau DK (1990) Code of ant–plant mutualism broken by parasite. Science 248(4952):215–217. https://doi.org/10.1126/science.248.4952.215

    CAS  Article  PubMed  Google Scholar 

  30. Longino J (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 151(1):1–150. https://doi.org/10.11646/zootaxa.151.1.1

    Article  Google Scholar 

  31. Mayer VE, Frederickson ME, McKey D, Blatrix R (2014) Current issues in the evolutionary ecology of ant–plant symbioses. New Phytol 202(3):749–764. https://doi.org/10.1111/nph.12690

    Article  PubMed  Google Scholar 

  32. Mondor E, Addicott J (2003) Conspicuous extra-floral nectaries are inducible in Vicia faba. Ecol Lett 6:495–497. https://doi.org/10.1046/j.1461-0248.2003.00457.x

    Article  Google Scholar 

  33. Mondor EB, Tremblay MN, Messing RH (2006) Extrafloral nectary phenotypic plasticity is damage- and resource-dependent in Vicia faba. Biol Let 2(4):583–585. https://doi.org/10.1098/rsbl.2006.0527

    Article  Google Scholar 

  34. Myers JH, Sarfraz RM (2017) Impacts of insect herbivores on plant populations. Annu Rev Entomol 62:207–230

    CAS  Article  Google Scholar 

  35. Orivel J, Lambs L, Malé PJ, Leroy C, Grangier J, Otto T, Quilichini A, Dejean A (2011) Dynamics of the association between a long-lived understory myrmecophyte and its specific associated ants. Oecologia 165:369–376. https://doi.org/10.1007/s00442-010-1739-5

    Article  PubMed  Google Scholar 

  36. Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM, Karban R (2008) Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319(5860):192–195. https://doi.org/10.1126/science.1151579

    CAS  Article  PubMed  Google Scholar 

  37. Pringle EG, Akçay E, Raab TK, Dirzo R, Gordon DM (2013) Water stress strengthens mutualism among ants, trees, and scale insects. PLoS Biol 11(11):e1001705. https://doi.org/10.1371/journal.pbio.1001705

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  39. Razo-Belman R, Molina-Torres J, Martínez O, Heil M (2018) Plant-ants use resistance-related plant odours to assess host quality before colony founding. J Ecol 106:379–390. https://doi.org/10.1111/1365-2745.12832

    CAS  Article  Google Scholar 

  40. Rico-Gray V, Oliveira PS (2007) The Ecology and Evolution of Ant-Plant Interactions. University of Chicago Press

    Book  Google Scholar 

  41. Risch S, Rickson F (1981) Mutualism in which ants must be present before plants produce food bodies. Nature 291:149–150. https://doi.org/10.1038/291149a0

    Article  Google Scholar 

  42. Russell L (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.4.https://CRAN.R-project.org/package=emmeans

  43. Stanton ML, Palmer TM (2011) The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree. Ecology 92:1073–1082. https://doi.org/10.1890/10-1239.1

    Article  PubMed  Google Scholar 

  44. Ward PS (1993) Systematic studies on Pseudomyrmex acacia-ants (Hymenoptera: Formicidae: Pseudomyrmecinae). J Hymenopt Res 2:117–168. https://doi.org/10.5281/zenodo.10150

    Article  Google Scholar 

  45. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  46. Young TP, Okello BD (1998) Relaxation of an induced defense after exclusion of herbivores: spines on Acacia drepanolobium. Oecologia 115(4):508–513. https://doi.org/10.1007/s004420050548

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was conducted with support from the Smithsonian Tropical Research Institute (STRI) Internship program to FG and MG. We thank the Ben Turner lab at STRI for use of the scale; Alfonso Carles for granting access to the Bosque Seco de Coronado Reserva Eugene Eisenmann, and the staff at Parque Natural Metropolitano. We also thank Mauricio Fernández, Frank Joyce and two anonymous reviewers for their feedback on an earlier version of this manuscript. This research was conducted under the MiAmbiente permit SE/AP-12-2019, from the Republic of Panama.

Author information

Affiliations

Authors

Contributions

SAV, FG and MG conceived ideas and designed methodology; FG, MG, and YG collected the data; SAV and FG analyzed the data; SAV and FG led the writing of the manuscript, and made equal contributions.

Corresponding author

Correspondence to Sabrina Amador-Vargas.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Sean O'Donnell

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19.5 KB)

Supplementary file2 (DOCX 262 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gijsman, F., González, Y., Guevara, M. et al. Short-term plasticity and variation in acacia ant-rewards under different conditions of ant occupancy and herbivory. Sci Nat 108, 31 (2021). https://doi.org/10.1007/s00114-021-01738-w

Download citation

Keywords

  • Ant–plant interaction
  • Swollen-thorn acacia
  • Myrmecophyte
  • Pseudomyrmex
  • Vachellia