Skip to main content

Proctodeal extrusion as a defensive behavioral response in blister beetles (Coleoptera: Meloidae)

Abstract

Defensive mechanisms in blister beetles (Coleoptera: Meloidae) include a wide variety of behavioral responses, chemical defense, and conspicuous external colorations. Although some of these mechanisms have been previously described, proctodeal extrusion, a defensive behavior involving the extrusion of inner abdominal membranes from the proctodeal region which appear intensely red or orange colored when the hemolymph is seen through them, has not been reported to date. Here, we tested the ability to display proctodeal extrusion in response to threat stimuli in wild populations of three blister beetle species inhabiting Central Spain: Berberomeloe majalis (Linnaeus, 1758), Berberomeloe comunero Sánchez-Vialas, García-París, Ruiz & Recuero, 2020, and Physomeloe corallifer (Germar, 1818). In addition, we observed and recorded various other defensive behaviors such as immobility, antennal threat display, autohemorrhage (reflex bleeding), defecation, and thanatosis (death feigning). The frequency at which proctodeal extrusion was observed differed among species, as did the stress intensity needed for extrusion and the probability of proctodeal extrusion in response to a particular threatening stimulus. Our findings indicate that, although proctodeal extrusion might be a widespread potential defensive mechanism in Meloidae, the ability to elicit it is not generalized across lineages. Physomeloe and Berberomeloe are endemic to the semi-arid Mediterranean region, and species adapted to such a climate would have developed strategies that limit hydric stress such as proctodeal extrusion, which mirrors the effect of autohemorrhage but without the fluid loss.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Data are available as electronic supplementary material (Online Resource 1).

Code availability

R code is available as electronic supplementary material (Online Resource 2).

References

  1. Addinsoft P (2016) XLSTAT 2016: data analysis and statistical solution for Microsoft Excel

  2. Bache F, Popescu SM, Rabineau M, Gorini C, Suc J-P, Clauzon G, Olivet J-P, Rubino J-L, Melinte-Dobrinescu MC, Estrada F, Londeix L, Armijo R, Meyer B, Jolive L, Jouannic G, Leroux E, Aslanian D, Dos Reis AT, Mocochain L, Dumurdzanov N, Zagorchev I, Lesic V, Tomic D, Cagatay MN, Brun J-P, Sokoutis D, Csato I, Ucarkus G, Ziyadin Çakır Z (2012) A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Res 24:125–153

    Article  Google Scholar 

  3. Bateman PW, Fleming PA (2009) There will be blood: autohaemorrhage behaviour as part of the defence repertoire of an insect. J Zool 278(4):342–348

    Article  Google Scholar 

  4. Bertaux B, Prost C, Heslan M, Dubertret L (1988) Cantharide acantholysis: endogenous protease activation leading to desmosomal plaque dissolution. Brit J Dermatol 118(2):157–165

    CAS  Article  Google Scholar 

  5. Boldyrev BT (1928) Biological studies on Bradyporus multituberculatus F.W. (Orth., Tettig.). Eos Rev Esp Ent 4:13–56

    Google Scholar 

  6. Bologna MA (1991) Fauna de Italia. XXVIII. Coleoptera Meloidae. Bologna: Edizioni Calderini

  7. Bologna MA, Marangoni C (1986) Sexual behaviour in some palaearctic species of Meloe (Coleoptera, Meloidae). Boll Socentomol Ital 118:65–82

    Google Scholar 

  8. Bologna MA, Oliverio M, Pitzalis M, Mariottini P (2008) Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae). Mol Phylogenet Evol 48(2):679–693

    CAS  Article  Google Scholar 

  9. Bologna MA, Pinto JD (2002) The Old World genera of Meloidae (Coleoptera): a key and synopsis. J Nat Hist 36(17):2013–2102

    Article  Google Scholar 

  10. Bravo C, Bautista LM, García-París M, Blanco G, Alonso JC (2014) Males of a strongly polygynous species consume more poisonous food than females. PLoS ONE 9:e111057

    Article  Google Scholar 

  11. Bravo C, Mas-Peinado P, Bautista LM, Blanco G, Alonso JC, García-París M (2017) Cantharidin is conserved across phylogeographic lineages and present in both morphs of Iberian Berberomeloe blister beetles (Coleoptera, Meloidae). Zool J Linnean Soc 180(4):790–804

    Article  Google Scholar 

  12. Carrel JE, Eisner T (1974) Cantharidin: potent feeding deterrent to insects. Science 183:755–757

    CAS  Article  Google Scholar 

  13. Hosmer DW, Lemeshow S (2000) Applied logistic regression. New York: Wiley

    Book  Google Scholar 

  14. Evans DL, Schmidt JO (1990) Insect defenses: adaptive mechanisms and strategies of prey and predators. Albany: State University of New York Press

    Google Scholar 

  15. Faraway JJ (2016) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models, 2nd edn. Boca Raton: CRC Press

    Book  Google Scholar 

  16. García-París M (1998) Revisión sistemática del género Berberomeloe Bologna, 1988 (Coleoptera, Meloidae) y diagnosis de un endemismo ibérico olvidado. Graellsia 54:97–109

    Article  Google Scholar 

  17. García-París M, Pavón-Gozalo P, Salinas-Ramos VB, Torres-Colín R, Zaldívar-Riverón A (2013) Rediscovery of Lytta corallifera Haag-Rutenberg, 1880 (Coleoptera: Meloidae) in Central Mexico. Rev Mex Biodiv 84:682–684

    Article  Google Scholar 

  18. García-París M, Ruiz JL, París M (2003) Los representantes de la tribu Lyttini (Coleoptera: Meloidae) de la Península Ibérica. Graellsia 59(2–3):69–90

    Article  Google Scholar 

  19. García-París M, Trotta-Moreu N, Capote L (2006) Estado de conocimiento actual y problemas de conservación de los Meloidae (Coleoptera) de la Comunidad de Madrid. Graellsia 62(specialissue):333–370

    Article  Google Scholar 

  20. Hollande A-C (1911) L’autohémorrhée ou le rejet du sang chez les Insectes (Toxicologie du sang). Arch Anat Microscop Morphol Exptl 13(2):171–318

    Google Scholar 

  21. Humphreys RK, Ruxton GD (2018) A review of thanatosis (death feigning) as an anti-predator behaviour. Behav Ecol Sociobiol 72(2):22

    Article  Google Scholar 

  22. Huth A, Dettner K (1990) Defense chemicals from abdominal glands of 13 rove beetle species of subtribe Staphylinina (Coleoptera: Staphylinidae, Staphylininae). J Chem Ecol 16(9):2691–2711

    CAS  Article  Google Scholar 

  23. Kosmidis I (2013) brglm: Bias reduction in binomial-response Generalized Linear Models. R package version 0.5–9

  24. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    CAS  Article  Google Scholar 

  25. Legendre P, Legendre L (2012) Numerical ecology. Elsevier

    Google Scholar 

  26. López-Estrada EK, Sanmartín I, García-París M, Zaldívar-Riverón A (2019) High extinction rates and non-adaptive radiation explains patterns of low diversity and extreme morphological disparity in North American blister beetles (Coleoptera, Meloidae). Mol Phylogenet Evol 130:156–168

    Article  Google Scholar 

  27. Merriam-Webster (2020) Autohemorrhage; Proctodaeum; Thanatosis. In Merriam-Webster.com dictionary. https://www.merriam-webster.com/dictionary/autohemorrhage. Idem: /proctodaeum. Id: /thanatosis. Accessed 26 Nov 2020

  28. Mirutenko VV (2013) The family Malachiidae (Insecta: Coleoptera) in collections of the Natural history museum in Belgrade. Acta Entomol Serbica 18(1/2):43–54

    Google Scholar 

  29. Muzzi M, Di Giulio A, Mancini E, Fratini E, Cervelli M, Gasperi T, Mariottini P, Persichini T, Bologna MA (2020) The male reproductive accessory glands of the blister beetle Meloe proscarabaeus Linnaeus, 1758 (Coleoptera: Meloidae): anatomy and ultrastructure of the cantharidin-storing organs. Arthropod Struct Dev 59:100980

    Article  Google Scholar 

  30. Nicolson SW (1994) Water replenishment following reflex bleeding in the blister beetle Decapotoma lunata Pallas (Coleoptera: Meloidae). Afr Entomol 2(1):21–23

    Google Scholar 

  31. Percino-Daniel N, Buckley D, García-París M (2013) Pharmacological properties of blister beetles (Coleoptera: Meloidae) promoted their integration into the cultural heritage of native rural Spain as inferred by vernacular names diversity, traditions, and mitochondrial DNA. J Ethnopharmacol 147(3):570–583

    Article  Google Scholar 

  32. Pinto JD (1975) A taxonomic study of the genus Tegrodera (Coleoptera: Meloidae) with special reference to sexual behavior. Can Entomol 107:45–66

    Article  Google Scholar 

  33. Rogers SM, Simpson SJ (2014) Thanatosis. Curr Biol 24:R1031–R1033

    CAS  Article  Google Scholar 

  34. Rosas-Ramos N, Mas-Peinado P, Recuero E, Ruiz JL, García-París M (2020) Catalogue, distribution, taxonomic notes and conservation of hunchback beetles (Tenebrionidae: Misolampus). ZooKeys 963:81–129

    Article  Google Scholar 

  35. R Development Core Team (2016) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing

    Google Scholar 

  36. Sánchez-Vialas A, García-París M, Ruiz JL, Recuero E (2020) Patterns of morphological diversification in giant Berberomeloe blister beetles (Coleoptera, Meloidae) reveal an unexpected taxonomic diversity concordant with mtDNA phylogenetic structure. Zool J Linnean Soc 189:1249–1312

    Article  Google Scholar 

  37. Sánchez-Vialas A, Recuero E, Jiménez-Ruiz Y, Ruiz JL, Marí-Mena N, García-París M (2021) Phylogeny of Meloini blister beetles (Coleoptera, Meloidae) and patterns of island colonization in the Western Palaearctic. Zool Scripta. https://doi.org/10.1111/zsc.12474

  38. Senarat S, Kettratad J, Poolprasert P, Mongkolchaichana E, Yenchumy W, Angsirijinda W (2014) Histological and histochemical description of mesentero-proctodeal regions in the striped blister beetle, Epicauta waterhousei (Haag-Rutenberg, 1880) (Coleoptera: Meloidae). Walailak J Sci & Tech (WJST) 11(10):851–856

    Google Scholar 

  39. Vencl FV, Morton TC, Mumma RO, Schultz JC (1999) Shield defense of a larval tortoise beetle. J Chem Ecol 25(3):549–566

    CAS  Article  Google Scholar 

  40. Whitman DW, Bloom MS, Alsop DW (1990) Allomones: chemicals for defense. In: Evans DL, Schmidt JO (eds) Insect Defenses. Albany: State University of New York Press, pp 289–351

    Google Scholar 

Download references

Acknowledgements

We thank Melinda Modrell for the thorough language revision. We also wish to thank two anonymous reviewers for their suggestions and comments, that have contributed to improve the article.

Funding

Field work and additional resources for this study were supported by the Spanish government (Ministerio de Ciencia, Innovación y Universidades) and the European Regional Development Fund (ERDF), under grant PID2019-110243 GB-I00/AEI/10.13039/501100011033 to MG-P.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natalia Rosas-Ramos.

Ethics declarations

Ethics approval

This study was conducted in accordance with applicable international, national, and/or institutional animal care guidelines.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: José Eduardo Serrão

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosas-Ramos, N., Rodríguez-Flores, P.C. & García-París, M. Proctodeal extrusion as a defensive behavioral response in blister beetles (Coleoptera: Meloidae). Sci Nat 108, 19 (2021). https://doi.org/10.1007/s00114-021-01728-y

Download citation

Keywords

  • Arid zones
  • Character evolution
  • Iberian Peninsula
  • Mediterranean region
  • Proctodeal extrusion