Skip to main content

Wolbachia impairs post-eclosion host preference in a parasitoid wasp

Abstract

Host preference behavior can result in adaptive advantages with important consequences for the fitness of individuals. Hopkin’s host-selection principle (HHSP) suggests that organisms at higher trophic levels demonstrate a preference for the host species on which they developed during their own larval stage. Although investigated in many herbivorous and predatory insects, the HHSP has, to our knowledge, never been tested in the context of insects hosting selfish endosymbiotic passengers. Here, we investigated the effect of infection with the facultative bacterial symbiont Wolbachia on post-eclosion host preference in the parasitoid wasp Trichogramma brassicae (Hymenoptera: Trichogrammatidae). We compared host preference in Wolbachia-infected individuals and uninfected adult female parasitoids after rearing them on two different Lepidopteran hosts, namely the flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) or the grain moth Sitotroga cerealella (Lepidoptera: Gelechiidae) in choice and no choice experimental design (n = 120 wasps per each choice/no choice experiments). We showed that in T. brassicae, Wolbachia affects the post-eclosion host preference of female wasps. Wolbachia-infected wasps did not show any host preference and more frequently switched hosts in the laboratory, while uninfected wasps significantly preferred to lay eggs on the host species they developed on. Additionally, Wolbachia significantly improved the emergence rate of infected wasps when reared on new hosts. Altogether, our results revealed that the wasp’s infection with Wolbachia may lead to impairment of post-eclosion host preference and facilitates growing up on different host species. The impairment of host preference by Wolbachia may allow T. brassicae to shift between hosts, a behavior that might have important evolutionary consequences for the wasp and its symbiont.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Should the manuscript be accepted, the data supporting the results will be archived in an appropriate public repository (Dryad) and the data DOI will be included at the end of the article https://doi.org/10.5061/dryad.ksn02v73w.

References

  • Agosta SJ, Klemens JA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11(11):1123–1134

    PubMed  Google Scholar 

  • Ahmed MZ, Breinholt JW, Kawahara AY (2016) Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol Biol 16:118

    PubMed  PubMed Central  Google Scholar 

  • Albertson R, Tan V, Leads RR, Reyes M, Sullivan W, Casper-Lindley C (2013) Mapping Wolbachia distributions in the adult Drosophila brain. Cell Microbe 15(9):1527–1544

    CAS  Google Scholar 

  • Anderson P, Anton S (2014) Experience-based modulation of behavioral responses to plant volatiles and other sensory cues in insect herbivores. Plant Cell Environ 37(8):1826–1835

    CAS  PubMed  Google Scholar 

  • Araujo SB, Braga MP, Brooks DR, Agosta SJ, Hoberg EP, von Hartenthal FW, Boeger WA (2015) Understanding host-switching by ecological fitting. PLoS ONE 10(10):e0139225

    PubMed  PubMed Central  Google Scholar 

  • Babendreier D, Kuske S, Bigler F (2003) Non-target host acceptance and parasitism by Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) in the laboratory. Biol Control 26(2):128–138

    Google Scholar 

  • Baldo L, Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72(11):7098–7110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barron AB (2001) The life and death of Hopkins’ host-selection principle. J Insect Behav 14(6):725–737

    Google Scholar 

  • Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu Rev Entomol 46(1):703–727

    CAS  PubMed  Google Scholar 

  • Bernays EA, Minkenberg OPJM (1997) Insect herbivores: different reasons for being a generalist. Ecol 78(4):1157–1169

    Google Scholar 

  • Bernays EA, Wcislo WT (1994) Sensory capabilities, information processing, and resource specialization. Q Rev Biol 69(2):187–204

    Google Scholar 

  • Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180(9):2373–2378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont Wolbachia pipientis, during periods of nutritional stress. PLoS path 5(4):e1000368

    Google Scholar 

  • Campan E, Benrey B (2004) Behavior and performance of a specialist and a generalist parasitoid of Bruchids on wild and cultivated beans. Biol Control 30(2):220–228

    Google Scholar 

  • Caragata EP, Real KM, Zalucki MP, McGraw EA (2011) Wolbachia infection increases recapture rate of field-released Drosophila melanogaster. Symbiosis 54(1):55

    Google Scholar 

  • Caubet Y, Jaisson P (1991) A post-eclosion early learning involved in host recognition by Dinarmus basalis rondani (Hymenoptera: Pteromalidae). Anim Behavi 42(6):977–980

    Google Scholar 

  • Cavalier-Smith T (1992) The number of symbiotic origins of organelles. Biosystems 28(1–3):91–106

    CAS  PubMed  Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19(21):995–1008

    Google Scholar 

  • Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M (2019) Insect odorscapes: from plant volatiles to natural olfactory scenes. Front physiol 10:972

    PubMed  PubMed Central  Google Scholar 

  • Corbet SA (1985) Insect chemosensory responses: a chemical legacy hypothesis. Ecol Entomol 10(2):143–153

    Google Scholar 

  • Corsaro D, Venditti D, Padula M, Valassina M (1999) Intracellular life. Crit Rev Microbiol 25(1):39–79

    CAS  PubMed  Google Scholar 

  • Couchoux C, Van Nouhuys S (2014) Effects of intraspecific competition and host-parasitoid developmental timing on foraging behavior of a parasitoid wasp. J Insect Behav 27(3):283–301

    PubMed  Google Scholar 

  • Crawley MJ (1993) GLIM for ecologists. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Boulétreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. PNAS 98(11):6247–6252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deisig N, Dupuy F, Anton S, Renou M (2014) Responses to pheromones in a complex odor world: sensory processing and behavior. Insects 5(2):399–422

    PubMed  PubMed Central  Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    CAS  PubMed  Google Scholar 

  • Egan SP, Funk DJ (2005) Individual advantages to ecological specialization: insights on cognitive constraints from three conspecific taxa. Proc Royal Soc B 273(1588):843–848

    Google Scholar 

  • Farooqui T (2007) Octopamine-mediated neuromodulation of insect senses. Neurochem Res 32:1511–1529

    CAS  PubMed  Google Scholar 

  • Farooqui T (2012) Review of octopamine in insect nervous systems. J Insect Physiol 4:1–17

    CAS  Google Scholar 

  • Farrokhi S (2010) A survey on Wolbachia effects on bionomics of Trichogramma brassicae. Dissertation, University of Tehran.

  • Farrokhi S, Ashouri A, Shirazi J, Allahyari H, Huigens ME (2010) A comparative study on the functional response of Wolbachia-infected and uninfected forms of the parasitoid wasp Trichogramma brassicae. J Insect Sci 10(1):167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleury F, Vavre F, Ris N, Fouillet P, Bouletreau M (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology 121(5):493–500

    PubMed  Google Scholar 

  • Funk DJ, Bernays EA (2001) Geographic variation in host specificity reveals host range evolution in Uroleucon ambrosiae aphids. Ecology 82(3):726–739

    Google Scholar 

  • Furihata S, Hirata M, Matsumoto H, Hayakawa Y (2015) Bacteria endosymbiont, Wolbachia, promotes parasitism of parasitoid wasp Asobara japonica. PLoS ONE 10(10):e0140914

    PubMed  PubMed Central  Google Scholar 

  • Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF (2006) Wolbachia infection suppresses both host defense and parasitoid counter-defense. Proc Royal Soc B 273:791–796

    Google Scholar 

  • Gandolfi M, Mattiacci L, Dorn S (2003) Mechanisms of behavioral alterations of parasitoids reared in artificial systems. J Chem Ecol 29(8):1871–1887

    CAS  PubMed  Google Scholar 

  • Giunti G, Canale A, Messing RH, Donati E, Stefanini C, Michaud JP, Benelli G (2015) Parasitoid learning: current knowledge and implications for biological control. Biol Control 90:208–219

    Google Scholar 

  • Grosso JP, Barneto JA, Velarde RA, Pagano EA, Zavala JA, Farina WM (2018) An early sensitive period induces long-lasting plasticity in the honeybee nervous system. Front Behav Neurosci 12:11

    PubMed  PubMed Central  Google Scholar 

  • Gruntenko NE, Ilinsky YY, Adonyeva NV, Burdina EV, Bykov RA, Menshanov PN, Rauschenbach IY (2017) Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions. BMC Evol Biol 17(2):252

    Google Scholar 

  • Gutiérrez-Ibáñez C, Villagra CA, Niemeyer HM (2007) Pre-pupation behavior of the aphid parasitoid Aphidius ervi (Haliday) and its consequences for pre-imaginal learning. Naturwissenschaften 94(7):595–600

    PubMed  Google Scholar 

  • Habermannova J, Bogusch P, Straka J (2013) Flexible host choice and common host switches in the evolution of generalist and specialist cuckoo bees (Anthophila: Sphecodes). PLoS ONE 8(5):e64537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamerlinck G, Hulbert D, Hood GR, Smith JJ, Forbes AA (2016) Histories of host shifts and co-speciation among free-living parasitoids of Rhagoletis flies. J Evol Biol 29(9):1766–1779

    CAS  PubMed  Google Scholar 

  • Harvey JA, de Haan L, Verdeny-Vilalta O, Visser B, Gols R (2019) Reproduction and offspring sex ratios differ markedly among closely related hyperparasitoids living in the same microhabitats. J Insect Behav 32:243–251

    Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? a statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    CAS  PubMed  Google Scholar 

  • Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126(4):933–948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann MP, Walker DL, Shelton AM (1995) Biology of Trichogramma ostriniae (Hym.:Trichogrammatidae) reared on Ostrinia nubilalis (Lep.: Pyralidae) and survey for additional hosts. BioControl 40(3):387–402

    Google Scholar 

  • Hohmann CL, Luck RF, Stouthamer R (2001) Effect of Wolbachia on the survival and reproduction of Trichogramma kaykai Pinto & Stouthamer (Hymenoptera: Trichogrammatidae). Neotrop Entomol 30(4):607–612

    Google Scholar 

  • Horjus M, Stouthamer R (1995) Does infection with thelytoky-causing Wolbachia in pre-adult and adult life stages influence the adult fecundity of Trichogramma deion and Muscidifurax uniraptor? Proc Exp Appl Entomol 6:35–40

    Google Scholar 

  • Huigens ME, Luck RF, Klaassen RHG, Maas MFPM, Timmermans MJTN, Stouthamer R (2000) Infectious parthenogenesis. Nature 405:178–179

    CAS  PubMed  Google Scholar 

  • Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stout- hamer R, (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc Royal Soc B 271:509–515

    CAS  Google Scholar 

  • Iranipour S, Vaez N, Nouri Ghanbalani G, Asghari Zakaria R, Mashhadi Jafarloo M (2010) Effect of host change on demographic fitness of the parasitoid. Trichogramma brassicae J Insect Sci 10(1):78

    PubMed  Google Scholar 

  • Ishii Y, Shimada M (2010) The effect of learning and search images on predator–prey interactions. Popul Ecol 52(1):27–35

    Google Scholar 

  • Jacob S, Laurent E, Haegeman B, Bertrand R, Prunier JG, Legrand D, Cote J, Chaine AS, Loreau M, Clobert J, Schtickzelle N (2018) Habitat choice meets thermal specialization: competition with specialists may drive suboptimal habitat preferences in generalists. PNAS 115(47):11988–11993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones TS, Bilton AR, Mak L, Sait SM (2015) Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species. Ecol Evol 5(2):459–465

    PubMed  PubMed Central  Google Scholar 

  • Kajtoch Ł, Kolasa M, Kubisz D, Gutowski JM, Ścibior R, Mazur MA, Holecová M (2019) Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci Rep 9(1):847

    PubMed  PubMed Central  Google Scholar 

  • Kester KM, Barbosa P (1991) Post emergence learning in the insect parasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae). J Insect Behav 4:727–742

    Google Scholar 

  • King BH (2002) Offspring sex ratio and number in response to proportion of host sizes and ages in the parasitoid wasp Spalangia cameroni (Hymenoptera: Pteromalidae). Environ Entomol 31(3):505–508

    Google Scholar 

  • Kishani Farahani H, Ashouri A, Goldansaz SH, Farrokhi S, Ainouche A, Van Baaren J (2015) Does Wolbachia infection affect decision-making in a parasitic wasp? Entomol Exp Appl 155(2):102–116

    Google Scholar 

  • Kishani Farahani H, Ashouri A, Goldansaz SH, Shapiro MS, Pierre JS, Van Baaren J (2016) Decrease of memory retention in a parasitic wasp: an effect of host manipulation by Wolbachia? Insect Sci 24(4):569–583

    PubMed  Google Scholar 

  • Kishani Farahani H, Moghadassi Y, Alford L, van Baaren J (2019) Effect of interference and exploitative competition on associative learning by a parasitoid wasp: a mechanism for ideal free distribution? Anim Behav 151:157–163

    Google Scholar 

  • Konig K, Krimmer E, Brose S, Gantert C, Buschluter I, Konig C, Klopfstein S, Wendt I, Baur H, Krogmann L, Steidle JLM (2015) Does early learning drive ecological divergence during speciation processes in parasitoid wasps? Proc R Soc B 282:20141850

    PubMed  PubMed Central  Google Scholar 

  • Korenko S, Michalková V, Zwakhals K, Pekár S (2011) Host specificity and temporal and seasonal shifts in host preference of a web-spider parasitoid Zatypota percontatoria. J Insect Sci 11(1):101

    PubMed  PubMed Central  Google Scholar 

  • Kuske S, Widmer F, Edwards PJ, Turlings TC, Babendreier D, Bigler F (2003) Dispersal and persistence of mass released Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in non-target habitats. Biol Control 27(2):181–193

    Google Scholar 

  • Li SJ, Ahmed MZ, Lv N, Shi PQ, Wang XM, Huang JL, Qiu BL (2017) Plant mediated horizontal transmission of Wolbachia between whiteflies. ISME J 11(4):1019–1028

    CAS  PubMed  Google Scholar 

  • Luquet M, Tritto O, Cortesero AM, Jaloux B, Anton S (2019) Early olfactory environment influences antennal sensitivity and choice of the host-plant complex in a parasitoid wasp. Insects 10(5):127

    PubMed Central  Google Scholar 

  • Ma WJ, Schwander T (2017) Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol 30(5):868–888

    PubMed  Google Scholar 

  • Mansfield S, Mills NJ (2002) Host egg characteristics, physiological host range, and parasitism following inundative releases of Trichogramma platneri (Hymenoptera: Trichogrammatidae) in walnut orchards. Environ Entomol 31(4):723–731

    Google Scholar 

  • Meiners T, Wäckers F, Lewis WJ (2003) Associative learning of complex odors in parasitoid host location. Chem Senses 28(3):231–236

    CAS  PubMed  Google Scholar 

  • Moran NA (1988) The evolution of host-plant alternation in aphids: evidence for specialization as a dead end. Am Nat 132(5):681–706

    Google Scholar 

  • Morrison RK, Jones SL, Lopez JD (1978) A unified system for the production and preparation of Trichogramma pretiosum for field release. Southwest Entomol 3:62–68

    Google Scholar 

  • Pannebakker BA, Beukeboom LW, van Alphen JJ, Brakefield PM, Zwaan BJ (2004) The genetic basis of male fertility in relation to haplodiploid reproduction in Leptopilina clavipes (Hymenoptera: Figitidae). Genetics 168(1):341–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papaj DR, Prokopy RJ (1989) Ecological and evolutionary aspects of learning in phytophagous insects. Annu Rev Entomol 34(1):315–350

    Google Scholar 

  • Peers MJ, Thornton DH, Murray DL (2012) Reconsidering the specialist-generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS ONE 7(12):e51488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Wang Y (2009) Infection of Wolbachia may improve the olfactory response of Drosophila. Chin Sci Bull 54(8):1369–1375

    Google Scholar 

  • Peng Y, Nielsen JE, Cunningham JP, McGraw EA (2008) Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl Environ Microbiol 74(13):3943–3948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto JD (1998) Systematics of the North American species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae). Entomol Soc Wash 22:1–287

    Google Scholar 

  • Poorjavad N, Goldansaz SH, Machtelinckx T, Tirry L, Stouthamer R, Van Leeuwen T (2012) Iranian Trichogramma : ITS2 DNA characterization and natural Wolbachia infection. Biocontrol 57(3):361–374

    Google Scholar 

  • Poorjavad N, Goldansaz SH, Van Leeuwen T (2018) Fertility life table parameters, COI sequences and Wolbachia infection in populations of Trichogramma brassicae collected from Chilo suppressalis. Bull Insectology 71(1):89–96

    Google Scholar 

  • Reudler JH, Biere A, Harvey JA, Van Nouhuys S (2011) Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. J Chem Ecol 37(7):765–778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrscheib CE, Bondy E, Josh P, Riegler M, Eyles D, van Swinderen B, Weible MW, Brownlie JC (2015) Wolbachia influences the production of octopamine and affects Drosophila male aggression. Appl Environ Microb 81(14):4573–4580

    CAS  Google Scholar 

  • Sachs JL, Wilcox TP (2005) A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Proc Royal Soc B 273(1585):425–429

    Google Scholar 

  • SAS Institute (2003) SAS User’s Guide: Statistics version 9.1. SAS Institute, Cary

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. OUP, Oxford

    Google Scholar 

  • Searcy DG (2003) Metabolic integration during the evolutionary origin of mitochondria. Cell Res 13(4):229

    CAS  PubMed  Google Scholar 

  • Stireman JO (2005) The evolution of generalization? Parasitoid flies and the perils of inferring host range evolution from phylogenies. J Evol Biol 18:325–336

    PubMed  Google Scholar 

  • Strand MR, Pech LL (1995) Immunological basis for compatibility in parasitoid-host relationships. Annu Rev Entomol 40(1):31–56

    CAS  PubMed  Google Scholar 

  • Strand MR, Obrycki JJ (1996) Host specificity of insect parasitoids and predators. Bioscience 46(6):422–429

    Google Scholar 

  • Strunov AA, Ilinskii YY, Zakharov IK, Kiseleva EV (2013) Effect of high temperature on survival of Drosophila melanogaster infected with pathogenic strain of Wolbachia bacteria. Russ J Genet Appl Res 3(6):435–443

    Google Scholar 

  • Strunov A, Kiseleva E (2014) Drosophila melanogaster brain invasion: Pathogenic Wolbachia in central nervous system of the fly. J Insect Sci 23(2):253–264

    Google Scholar 

  • Suzuki Y, Tsuji H, Sasakawa M (1984) Sex allocation and effects of superparasitism on secondary sex ratios in the gregarious parasitoid Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Anim Behav 32:478–484

    Google Scholar 

  • Templé N, Richard F (2015) Intra-cellular bacterial infections affect learning and memory capacities of an invertebrate. Front Zool 12:36

    PubMed  PubMed Central  Google Scholar 

  • Timmermans MJ, Ellers J (2009) Wolbachia endosymbiont is essential for egg hatching in a parthenogenetic arthropod. Ecol Evol 23(6):931

    Google Scholar 

  • Tolley SJA, Nonacs P, Sapountzis P (2019) Wolbachia horizontal transmission events in ants: what do we know and what can we learn? Front Microbiol 10:296–305

    PubMed  PubMed Central  Google Scholar 

  • Vale PF, Jardine MD (2015) Sex-specific behavioural symptoms of viral gut infection and Wolbachia in Drosophila melanogaster. J Insect Physiol 82:28–32

    CAS  PubMed  Google Scholar 

  • Vamosi JC, Armbruster WS, Renner SS (2014) Evolutionary ecology of specialization: insights from phylogenetic analysis. Proc Royal Soc B 281(1795):20142004

    Google Scholar 

  • Van Oudenhove L, Mailleret L, Fauvergue X (2017) Infochemical use and dietary specialization in parasitoids: a meta-analysis. Ecol Evol 7(13):4804–4811

    PubMed  PubMed Central  Google Scholar 

  • Wajnberg E (1989) Analysis of variations in handling time in Trichogramma maidis. Entomophaga 34:397–408

    Google Scholar 

  • Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among Neotropical Arthropods. Proc Royal Soc B 262(1364):197–204

    Google Scholar 

  • Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Royal Soc B 267(1450):1277–1285

    CAS  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741

    CAS  PubMed  Google Scholar 

  • Wolff GH, Riffell JA (2018) Olfaction, experience and neural mechanisms underlying mosquito host preference. J Exp Biol 221(4): jeb157131.

Download references

Acknowledgements

We appreciate Prof. Jean-Sébastien Pierre for his help and comments in improving statistical analyses.

Funding

This study was financially supported by the University of Tehran (Grant #2654A32 to PA), Academy of Finland (Grant #321543 to AD), and the Marie-Curie Sklodowska Individual fellowship (#120586, Host Sweet Home to AD). Each sponsor had no involvement in the study design, the collection, analysis, and interpretation of data, the writing, or where to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

P.A. and A.A. designed the experiments. P.A. performed the experiments. H.K.F. and A.D. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Hossein Kishani Farahani.

Ethics declarations

Animal welfare ethics

During all experiments, all wasps were reared on flour moth larvae in the laboratory conditions at 25 °C with a 16:8 L:D photoperiod and 50 ± 5% R.H. females were kept in tubes (mentioned in Material and methods) separately. Adult parasitoids were fed on undiluted honey. All wasps were maintained and tested under the same conditions, and throughout all experiments, 1-day-old wasps were fed on a 10% honey solution. All animals were obtained from a culture maintained at the Insectary and Quarantine Facility, University of Tehran. After finishing the experiments, all wasps were kept in the same condition and were fed with undiluted honey, and during this period, they were exposed to hosts to have routine life stages including feeding and oviposition.

The current study was not included any potentially harmful manipulations and Invasive samples.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by: Vincent Doublet

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abrun, P., Ashouri, A., Duplouy, A. et al. Wolbachia impairs post-eclosion host preference in a parasitoid wasp. Sci Nat 108, 13 (2021). https://doi.org/10.1007/s00114-021-01727-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-021-01727-z

Keywords

  • Host preference
  • Parasitoid
  • Symbiont
  • Hopkin’s host-selection principle