Skip to main content

A Myanmar amber cockroach with protruding feces contains pollen and a rich microcenosis

Abstract

Early endosymbiotic interactions are recorded only from a Cretaceous termite and a cockroach. Mesoblatta maxi Hinkelman, gen. et sp. nov. is the second representative of the dominant, cosmopolitan Mesozoic family Mesoblattinidae known from Cenomanian northern Myanmar amber, and the fourteenth from both amber and sedimentary rocks. Unique characters are rare (n = 19), symplesiomorphies are frequent (n = 140), and foremost is a standard maxillary palp, an irregular area between forewing veins radius and media, central ocellus, and multisegmented styli, suggesting an ancestral position with respect to Blattidae. Autapomorphies of this otherwise conservative taxon are only its large size and a short probasitarsus. Two nymphs with fecal pellets protruding from their body, Blattocoprolites mesoblattamaxi Hinkelman, ichogen. et ichnosp. nov., represent the first cockroaches with formalized coprolites (along with Blattocoprolites blattulidae Hinkelman, ichnosp. nov. established herein from Lebanese amber) and provide evidence of burial defecation. Subhomogenic consistency of coprolites with mucous components, “pseudoinclusions,” leaf, trichia, wood debris, cycad pollen, endosymbiotic protists, and epibiotic bacteria directly document pollen transfer through the digestive tract and the earliest coevolution with protists and bacteria. Other post-burial fecal bacteria at the surface are documented for the first time in the Mesozoic, directly indicating structured dung processing. Reference samples (as well as almost all Myanmar amber samples) contain numerous “pseudoinclusions,” probably representing damaged or dead cysts of Chlamydomonas hanublikanus Vršanská et Hinkelman, sp. nov. established on the basis of its reproductive stages (with an origin within the resin inside the tree). These are documented together with green algae, including Spirogyra Nees, 1820; flagellates; and flagellate amoebae, promoting massive future microbiota studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451. https://doi.org/10.1111/j.1550-7408.2005.00053.x

    Article  PubMed  Google Scholar 

  2. Al-Bassam K, Halodová P (2018) Fossil bacteria in Cenomanian–Turonian phosphate nodules and coprolites, Bohemian Cretaceous Basin, Czech Republic. Ann Soc Geol Pol 88:57–27. https://doi.org/10.14241/asgp.2018.009

    Article  Google Scholar 

  3. Arillo A (2007) Paleoethology: fossilized behaviours in amber. Geol Acta 5:159–166. https://doi.org/10.1344/105.000000301

    Article  Google Scholar 

  4. Ascaso C, Wierzchos J, Corral JC, López JF, Alonso J (2003) New applications of light and electron microscopic techniques for the study of microbial inclusions in amber. J Paleontol 77:1182–1192. https://doi.org/10.1666/0022-3360(2003)077<1182:NAOLAE>2.0.CO;2

  5. Ascaso C, Wierzchos J, Speranza M, Gutiérrez JC, Martín-González A, De Los Ríos A, Alonso J (2005) Fossil protists and fungi in amber and rock substrates. Micropaleontol. 51:59–72. https://doi.org/10.1661/0026-2803(2005)051[0059:FPAFIA]2.0.CO;2

    Article  Google Scholar 

  6. Astafieva MM, Rozanov AY, Sadovnikov GN, Sapova EV (2009) Fossil bacteria from the Permotriassic Trappean strata of Siberia. Paleontol J 43:896–904. https://doi.org/10.1134/S0031030109080085

    Article  Google Scholar 

  7. Astafieva MM, Rozanov AY, Bogina MM, Chistyakov AV, Sharkov EV, Hoover RB (2010) Early Precambrian pillow lavas as habitat for microfossils. Proceedings SPIE 7819, Instruments, Methods, and Missions for fy XIII:781908. https://doi.org/10.1117/12.859835

  8. Astafieva MM, Chistyakov AA, Bogina MM, Sharkov EV (2013) Early proterozoic pillow lavas of Suisari as habitats of the earliest microorganisms. Paleontol J 47:1110–1115. https://doi.org/10.1134/S0031030113100055

    Article  Google Scholar 

  9. Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20:357–374. https://doi.org/10.1016/0301-9268(83)90081-5

    Article  Google Scholar 

  10. Bai M, Beutel RG, Klass KD, Zhang W, Yang X, Wipfler B (2016) †Alienoptera–a new insect order in the roach-mantodean twilight zone. Gondwana Res 39:317–326. https://doi.org/10.1016/j.gr.2016.02.002

    Article  Google Scholar 

  11. Bai M, Beutel RG, Zhang W, Wang S, Hörnig M, Gröhn C, Yan E, Yang X, Wipfler B (2018) A new Cretaceous insect with a unique cephalo-thoracic scissor device. Curr Biol 28:438–443. https://doi.org/10.1016/j.cub.2017.12.031

    CAS  Article  PubMed  Google Scholar 

  12. Bao T, Wang B, Li J, Dilcher D (2019) Pollination of cretaceous flowers. Proc Natl Acad Sci U S A 116:24707–24711. https://doi.org/10.1073/pnas.1916186116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Barna P, Šmídová L, Coutiño José MA (2019) Living cockroach genus Anaplecta discovered in Chiapas amber (Blattaria: Ectobiidae: Anaplecta vega sp.n.). Peer J 7:e7922. https://doi.org/10.7717/peerj.7922

    Article  PubMed  Google Scholar 

  14. Beimforde C, Schmidt AR (2010) Microbes in resinous habitats: a compilation from modern and fossil resins. In: Reitner J, Quéric NV, Arp G (eds) Advances in stromatolite geobiology. Springer, Berlin, pp 391–407. https://doi.org/10.1007/978-3-642-10415-2_24

    Chapter  Google Scholar 

  15. Bermudes D, Chase D, Margulis L (1988) Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating cockroaches and termites: Pillotina gen. nov., nom. rev.; Pillotina calotermitidis sp. nov., nom. rev.; Diplocalyx gen. nov., nom. rev.; Diplocalyx calotermitidis sp. nov., nom. rev.; Hollandina gen. nov., nom. rev.; Hollandina pterotermitidis sp. nov., nom. rev.; and Clevelandina reticulitermitidis gen. nov., sp. nov. Int J Syst Bacteriol 38:291–302. https://doi.org/10.1099/00207713-38-3-291

    CAS  Article  PubMed  Google Scholar 

  16. Blunck G (1929) Bakterieneinschlüsse im Bernstein. Centralbl Min Geol Paläont (Abt.B) 11:554–555

    Google Scholar 

  17. Breton G, Tostain F (2005) Les microorganismes de l’ambre cénomanien d’Écommoy (Sarthe, France). CR Paleovol 4:31–46. https://doi.org/10.1016/j.crpv.2004.11.004

    Article  Google Scholar 

  18. Brunner von Wattenwyl K (1865) Nouveau Système des Blattaires. G. Braumüller, Vienne

    Google Scholar 

  19. Brunner von Wattenwyl K (1882) Prodromus der Europäischen Orthopteren. Monografien Entomol:1–466

  20. Bütschli O (1878) Beiträge zur Kenntnis der Flagellaten und einiger verwandten Organismen. Z Wiss Zool 30:205–281

    Google Scholar 

  21. Carpenter FM (1932) Jurassic insects from Solenhofen in the Carnegie Museum and the Museum of Comparative Zoology. In Holland WJ (ed.) Annals of the Carnegie Museum Vol. XXI, No. 3. Publications of the Carnegie Museum, Pittsburgh, pp 116

  22. Chi Fru E, Ivarsson M, Kilias SP, Bengtson S, Belivanova V, Marone F, Fortin D, Broman C, Stampanoni M (2013) Fossilized iron bacteria reveal a pathway to the origin of banded iron formations. Nat Commun 4:2050. https://doi.org/10.1038/ncomms3050

    CAS  Article  PubMed  Google Scholar 

  23. Colin JP, Néraudeau D, Nel A, Perrichot V (2011) Termite coprolites (Insecta: Isoptera) from the Cretaceous of western France: a palaeoecological insight. Rev Micropaleontol 54:129–139. https://doi.org/10.1016/j.revmic.2011.06.001

    Article  Google Scholar 

  24. Collinson ME (1990) Plant evolution and ecology during the early Cenozoic diversification. Adv Bot Res 17:1–98. https://doi.org/10.1016/s0065-2296(08)60132-9

    Article  Google Scholar 

  25. Comstock JH, Needham JG (1898) The wings of insects. Amer Nat 33:117–126

    Google Scholar 

  26. Cosmidis J, Benzerara K, Gheerbrant E, Estève I, Bouya B, Amaghzaz M (2013) Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco). Geobiology 11:139–153. https://doi.org/10.1111/gbi.12022

    CAS  Article  PubMed  Google Scholar 

  27. Cross FR, Umen JG (2015) The Chlamydomonas cell cycle. Plant J:82, 370–392. https://doi.org/10.1111/tpj.12795

  28. Dahlström Å, Brost L (1995) Stenen som flyter och brinner. Norstedts Förlag, Helsingfors

    Google Scholar 

  29. Dangeard PA (1888) Recherches sur les algues inférieures. Ann Sci Nat Sér 7 Bot 4:105–175

    Google Scholar 

  30. Decoursey JD, Otto JS (1957) Endamoeba histolytica and certain other protozoan organisms found in cockroaches in Cairo, Egypt. J N Y Entomol Soc 64:157–163

    Google Scholar 

  31. Deichmüller LV (1886) Die Insekten aus dem lithographischen Schiefer im Dresdner Museum. Mitt Königl Mineral Geol Praehist Mus 7:1–88

    Google Scholar 

  32. Dittmann IL, Hörnig MK, Haug JT, Haug C (2015) Raptoblatta waddingtonae n. gen. et n. sp.–an Early Cretaceous roach-like insect with a mantodean-type raptorial foreleg. Palaeodiversity 8:103–111

    Google Scholar 

  33. Dolan MF, Melnitsky H (2005) Patterns of protist-bacteria associations in the gut of the wood-feeding cockroach Cryptocercus. J N C Acad Sci 121:56–60

    Google Scholar 

  34. Dujardin F (1841) Histoire Naturelle des Zoophytes. Infusoires, comprenant la physiologie et la classification de ces animaux, et la manière de les étudier à l’aide du microscope. Librairie Encyclopédique de Roret, Paris

  35. Ehrenberg CG (1833) Über die Entwicklung und Lebensdauer der Infusionsthiere. Abhandlungen der Abhandl Akad Wiss Berlin 1833:288

    Google Scholar 

  36. Engel MS, Pérez-de la Fuente R (2012) A new species of roach from the Jurassic of India (Blattaria: Mesoblattinidae). J Kansas Entomol Soc 85:1–4. https://doi.org/10.2317/JKES110524.1

    Article  Google Scholar 

  37. Fakhri MH (2015) Phylogeny and diversity of Entamoeba in cockroaches, with an emphasis on Periplaneta americana. Dissertation, University of Arkansas

  38. Fresenius G (1858) Beiträge zum Kenntnis Mikroskopischer Organismen. Abhandlungen, Senckenberg Naturforsch. Gesellsch 2:211–242

    Google Scholar 

  39. Gao T, Shih C, Labandeira CC, Liu X, Wang Z, Che Y, Yin X, Ren D (2018) Maternal care by Early Cretaceous cockroaches. J Syst Palaeontol 17:379–391. https://doi.org/10.1080/14772019.2018.1426059

    Article  Google Scholar 

  40. Geinitz FE (1880) Der Jura von Dobbertin in Mecklenburg und seine Versteinerungen. Z Dtsch Geol Ges 32:510–535

    Google Scholar 

  41. Geirnaert E (2002) L’ambre, miel de fortune et mémoire de vie. Les Editions du Piat, Monistrol-sur-Loire

    Google Scholar 

  42. Genise JF (1995) Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina. Ichnos 3:287–299. https://doi.org/10.1080/10420949509386399

    Article  Google Scholar 

  43. Girard V, Breton G, Brient L, Néraudeau D (2009a) Sheathed prokaryotic filaments, major components of Mid-Cretaceous French amber microcoenoses. J Paleolimnol 42:437–447. https://doi.org/10.1007/s10933-008-9287-2

    Article  Google Scholar 

  44. Girard V, Schmidt AR, Struwe S, Perrichot V, Breton G, Néraudeau D (2009b) Taphonomy and palaeoecology of Mid-Cretaceous amber-preserved microorganisms from southwestern France. Geodiversitas 31:153–162. https://doi.org/10.5252/g2009n1a14

    Article  Google Scholar 

  45. Girard V, Néraudeau D, Adl SM, Breton G (2011) Protist-like inclusions in amber, as evidenced by Charentes amber. Eur J Protistol 47:59–66. https://doi.org/10.1016/j.ejop.2010.12.003

    Article  PubMed  Google Scholar 

  46. Gorlenko VM, Zhmur SI, Duda VI, Osipov GA, Suzina NE, Dmitriev VV (2000) Fine structure of fossilized bacteria in Volyn Kerite. Origins Life Evol B 30:567–577. https://doi.org/10.1023/A:1026580615153

    CAS  Article  Google Scholar 

  47. Greenblatt CL, Davis A, Clement BG, Kitts CL, Cox T, Cano RJ (1999) Diversity of microorganisms isolated from amber. Microb Ecol 38:58–68. https://doi.org/10.1007/s002489900153

    CAS  Article  PubMed  Google Scholar 

  48. Greenblatt CL, Baum J, Klein BY, Nachshon S, Koltunov V, Cano RJ (2004) Micrococcus luteus-survival in amber. Microb Ecol 48:120–127. https://doi.org/10.1007/s00248-003-2016-5

    CAS  Article  PubMed  Google Scholar 

  49. Grimaldi DJ (1996) Amber: window to the past. Abrams/American Museum of Natural History, New York

    Google Scholar 

  50. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  51. Grimaldi DA, Engel MS, Nascimbene PC (2002) Fossiliferous Cretaceous amber from Myanmar(Burma): its rediscovery, biotic diversity, and paleontological significance. Am Mus Novit 3361:3–4. https://doi.org/10.1206/0003-0082(2002)361<0001:FCAFMB>2.0.CO;2

    Article  Google Scholar 

  52. Haaramo M (2006) Dictyoptera – cockroaches, termites, mantids. https://www.mv.helsinki.fi/home/mhaaramo/metazoa/protostoma/arthropoda/insecta/polyneoptera/dictyoptera.html Accessed 15 Nov 2019

  53. Handlirsch A (1906) Die Fossilen Insekten und die Phylogenie der rezenten Formen, parts I–IV. Ein Handbuch fur Palaontologen und Zoologen. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  54. Harris EH (2009) The Chlamydomonas sourcebook, 2nd edn. Academic Press, Oxford

    Google Scholar 

  55. Hinkelman J (2019) Spinaeblattina myanmarensis gen. et sp. nov. and Blattoothecichnus argenteus ichnogen. et ichnosp. nov. (both Mesoblattinidae) from Mid-Cretaceous Myanmar amber. Cretac Res 99:229–239. https://doi.org/10.1016/j.cretres.2019.02.026

    Article  Google Scholar 

  56. Hinkelman J (2020) Earliest behavioral mimicry and possible food begging in a Mesozoic alienopterid pollinator. Biologia 75:1–10. https://doi.org/10.2478/s11756-019-00278-z

    Article  Google Scholar 

  57. Hooker JJ, Collinson ME, van Bergen PF, Singer RL, de Leeuw JW, Jones PT (1995) Reconstruction of land and freshwater palaeoenvironments near the Eocene–Oligocene boundary, southern England. J Geol Soc Lond 152:449–468. https://doi.org/10.1144/gsjgs.152.3.0449

    CAS  Article  Google Scholar 

  58. Huber I (1974) Taxonomic and ontogenetic studies of cockroaches (Blattaria). Univ Kans Sci Bull 50:233–332

    Google Scholar 

  59. Kaddumi HF (2005) Amber of Jordan: the oldest prehistoric insects in fossilized resin. Contributions from the Eternal river Museum of Natural History, Amman

    Google Scholar 

  60. Kakumanu ML, Maritz JM, Carlton J, Schal C (2018) Overlapping community compositions of gut and fecal microbiomes in lab-reared and field-collected German cockroaches. Appl Environ Microb 84:e01037–e01018. https://doi.org/10.1128/AEM.01037-18

    Article  Google Scholar 

  61. Kania I, Wang B, Szwedo J (2015) Dicranoptycha Osten Sacken, 1860 (Diptera, Limoniidae) from the earliest Cenomanian Burmese amber. Cretac Res 52:522–530. https://doi.org/10.1016/j.cretres.2014.03.002

    Article  Google Scholar 

  62. Katinas V (1983) Baltijos Gintaras. Mokslas, Vilnius

    Google Scholar 

  63. Keighley D, Boonsue S, Hall D (2018) Phosphatized tungsten-metabolizing coccoid microbes interpreted from oil shale of an Eocene lake, Green River Formation, Utah, USA. Geobiology 16:610–627. https://doi.org/10.1111/gbi.12310

    CAS  Article  PubMed  Google Scholar 

  64. Klass KD, Nalepa C, Lo N (2008) Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana. Mol Phylogenet Evol 46:809–817. https://doi.org/10.1016/j.ympev.2007.11.028

    Article  PubMed  Google Scholar 

  65. Kočárek P (2018a) Alienopterella stigmatica gen. et sp. nov.: the second known species and specimen of Alienoptera extends knowledge about this Cretaceous order (Insecta: Polyneoptera). J Syst Palaeontol 17:491–499. https://doi.org/10.1080/14772019.2018.1440440

    Article  Google Scholar 

  66. Kočárek P (2018b) The cephalo-thoracic apparatus of Caputoraptor elegans may have been used to squeeze prey. Curr Biol 28:R824–R825. https://doi.org/10.1016/j.cub.2018.06.046

    CAS  Article  PubMed  Google Scholar 

  67. Lambert LH, Cox T, Mitchell K, Rosselló-Mora RA, Del Cueto C, Dodge DE, Orkand P, Cano RJ (1998) Staphylococcus succinus sp. nov., isolated from Dominican amber. Int J Syst Evol Microbiol 48:511–518. https://doi.org/10.1099/00207713-48-2-511

    CAS  Article  Google Scholar 

  68. Latreille PA (1810) Considérations générales sur l’ordre naturel des animaux composant les classes des crustacès, des arachnides, et des insectes, avec un tableau méthodique de leurs genres, disposés en familles. Chez. F. Schoell, Paris

    Google Scholar 

  69. Li XR, Huang D (2018) A new Cretaceous cockroach with heterogeneous tarsi preserved in Burmese amber (Dictyoptera, Blattodea, Corydiidae). Cretac Res 92:12–17. https://doi.org/10.1016/j.cretres.2018.07.017

    Article  Google Scholar 

  70. Li XR, Huang D (2019a) A mantis-type ootheca from Mid-Cretaceous Burmese amber (Insecta: Dictyoptera). Cretac Res 100:134–137. https://doi.org/10.1016/j.cretres.2019.04.002

    Article  Google Scholar 

  71. Li XR, Huang D (2019b) A new Mid-Cretaceous cockroach of stem Nocticolidae and reestimating the age of Corydioidea (Dictyoptera: Blattodea). Cretac Res 106:104202. https://doi.org/10.1016/j.cretres.2019.104202

    Article  Google Scholar 

  72. Lindgren P, Ivarsson M, Neubeck A, Broman C, Henkel H, Holm NG (2010) Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden. Int J Astrobiol 9:137–146. https://doi.org/10.1017/S147355041000011X

    Article  Google Scholar 

  73. Lutz A, Splendore A (1903) Über Pebrine und verwandte Mikrosporidien. Zentralbl Bakteriol B Abt 1(33):150–157

    Google Scholar 

  74. Martínez-Delclòs X (1990) Insectos del Cretácico inferior de Santa Maria de Meià (Llieda): Colección Lluís Marià Vidal i Carreras. Treb Mus Geol Barcelona 1:91–116

    Google Scholar 

  75. Martínez-Delclòs X (1993) Blátidos (Insecta, Blattodea) del Cretácico Inferior de España. Familias Mesoblattinidae, Blattulidae y Poliphagidae. Bol Geol Min 104-5:516–538

    Google Scholar 

  76. Martín-González A, Wierzchos J, Gutiérrez JC, Alonso J, Ascaso C (2009) Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber. Sci Nat 96:551–564. https://doi.org/10.1007/s00114-009-0508-y

    CAS  Article  Google Scholar 

  77. Mlynský T, Wu H, Koubová I (2019) Dominant burmite cockroach Jantaropterix ellenbergeri sp.n. might laid isolated eggs together. Palaeontogr. Abt. A. Palaeozool-Stratigr. 314:69–79. https://doi.org/10.1127/pala/2019/0091

    Article  Google Scholar 

  78. Müller OF (1773) Vermium Terrestrium et Fluviatilium, seu Animalium Infusoriorum, Helminthicorum et Testaceorum, non Marinorum, Succincta Historia. Heineck & Faber, Lipsiae

    Google Scholar 

  79. Müller OF (1776) Zoologiæ danicæ prodromus, seu animalium daniæ et norvegiæ indigenarum characteres, nomina, et synonyma imprimis popularium. Hallageri, Copenhagen

    Google Scholar 

  80. Nees CG (1820) Horae physicae Berolinenses collectae ex symbolis virorum doctorum H. Linkii...; edicuravit Christianus Godof. Nees ab Esenbeck. Sumtibus Adolphi Marcus, Bonnae

  81. Nel A, Paicheler JC (1993) Les Isoptera fossils: état actuel des connaissances, implications paléoécologiques et paléoclimatologiques [Insecta, Dictyoptera]. In: Nel A, Martínez-Delclòs X, Paicheler JC (eds) Essai de révision des Aeschinioidea (Insecta, Odonata, Anisoptera) / Les Isoptera fossiles (Insecta, Dictyoptera). CNRS Editions [Cahiers de Paléontologie], Paris, pp 103–179

    Google Scholar 

  82. Néraudeau D, Vullo R, Bénéfice P, Breton G, Dépré É, Gaspard D, Girard V, Le Couls M, Moreau JD, Nel A, Perrichot V, Solórzano-Kraemer MM, Wappler T (2019) The paralic Albian–Cenomanian Puy-Puy Lagerstätte (Aquitaine Basin, France): an overview and new data. Cretac Res in press. https://doi.org/10.1016/j.cretres.2019.03.022

  83. Noetling F (1892) Preliminary report on the economic resources of the amber and jade mine areas in Upper Burma. Rec Geol Surv India 25:130–135

    Google Scholar 

  84. Noetling F (1893) On the occurrence of Burmite, a new fossil resin from Upper Burma. Rec Geol Surv India 26:31–40

    Google Scholar 

  85. Noirot C, Noirot-Timothée C (1969) The digestive system. In: Krishna K, Weesner FM (eds) Biology of termites. Academic Press, San Diego, pp 49–80. https://doi.org/10.1126/science.170.3963.1186

    Chapter  Google Scholar 

  86. Nuorteva M, Kinnunen KA (2008) Insect frass in Baltic amber. B Geol Soc Finland 80:105–124. https://doi.org/10.17741/bgsf/80.2.003

    Article  Google Scholar 

  87. Pascher A (1914) Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellschaft 32:136–160

    Google Scholar 

  88. Peňalver E, Delclòs X, Soriano C (2007) A new rich amber outcrop with palaeobiological inclusions in the Lower Cretaceous of Spain. Cretac Res 28:791–802. https://doi.org/10.1016/j.cretres.2006.12.004

    Article  Google Scholar 

  89. Pielínska A (2001) Pflanzen im Bernstein. In: Krumbiegel G, Krumbiegel B (eds) Faszination Bernstein. Goldschneck-Verlag, Weinstadt, p 111

    Google Scholar 

  90. Podstrelená L, Sendi H (2018) Cratovitisma Bechly, 2007 (Blattaria: Umenocoleidae) recorded in Lebanese and Myanmar ambers. Palaeontogr Abt A Palaeozool-Stratigr 310:121–129. https://doi.org/10.1127/pala/2018/0076

    Article  Google Scholar 

  91. Poinar GO Jr (1992) Life in amber. Stanford University Press, Palo Alto

    Google Scholar 

  92. Poinar GO Jr (1998) Trace fossils in amber: a new dimension for the ichnologist. Ichnos 6:47–52. https://doi.org/10.1080/10420949809386438

    Article  Google Scholar 

  93. Poinar GO Jr (1999) Paleochordodes protus n.g., n.sp. (Nematomorpha, Chordodidae), parasites of a fossil cockroach, with a critical examination of other fossil hairworms and helminths of extant cockroaches (Insecta: Blattaria). Invertebr Biol 118:109–115. https://doi.org/10.2307/3227053

    Article  Google Scholar 

  94. Poinar GO Jr (2008) Leptoconops nosopheris sp. n. (Diptera: Ceratopogonidae) and Paleotrypanosoma burmanicus gen. n., sp. n. (Kinetoplastida: Trypanosomatidae), a biting midge-trypanosome vector association from the Early Cretaceous. Mem Inst Oswaldo Cruz 103:468–471. https://doi.org/10.1590/S0074-02762008000500010

    Article  PubMed  Google Scholar 

  95. Poinar GO Jr (2009a) Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasit Vector 2:12. https://doi.org/10.1186/1756-3305-2-12

    Article  Google Scholar 

  96. Poinar GO Jr (2009b) Early Cretaceous protist flagellates (Parabasalia: Hypermastigia: Oxymonada) of cockroaches (Insecta: Blattaria) in Burmese amber. Cretac Res 30:1066–1072. https://doi.org/10.1016/j.cretres.2009.03.008

    Article  Google Scholar 

  97. Poinar GO Jr (2010a) Notes on the origins and evolution of Bacillus in relation to insect parasitism. In: Boucot AJ, Poinar GO Jr (eds) Fossil behavior compendium, vol 45. CRC Press, Boca Raton, pp 68–71. https://doi.org/10.1134/S0031030111020109

    Chapter  Google Scholar 

  98. Poinar GO Jr (2010b) Gregarine infections in insects. In: Boucot AJ, Poinar GO Jr (eds) Fossil behavior compendium, vol 45. CRC Press, Boca Raton, pp 54–56. https://doi.org/10.1134/S0031030111020109

    Chapter  Google Scholar 

  99. Poinar GO Jr (2011) Paleorhodococcus dominicanus n. gen., n. sp. (Actinobacteria) in a faecal droplet of Triatoma dominicana (Hemiptera: Reduviidae: Triatominae) in Dominican amber. Hist Biol 24:219–221. https://doi.org/10.1080/08912963.2011.615931

    Article  Google Scholar 

  100. Poinar GO Jr (2012) Fossil gregarines in Dominican and Burmese amber: examples of accelerated development? Palaeodiversity 5:1–6

    Google Scholar 

  101. Poinar GO Jr (2014) Rickettsial-like cells in the Cretaceous tick, Cornupalpatum burmanicum (Ixodida: Ixodidae). Cretac Res 52:623–627. https://doi.org/10.1016/j.cretres.2014.02.007

    Article  Google Scholar 

  102. Poinar GO Jr (2015) Spirochete-like cells in a Dominican amber Ambylomma tick (Arachnida: Ixodidae). Hist Biol 27:565–570. https://doi.org/10.1080/08912963.2014.897699

    Article  Google Scholar 

  103. Poinar GO Jr (2016) What fossils reveal about the protozoa progenitors, geographic provinces, and early hosts of malarial organisms. Am Entomol 62:22–25. https://doi.org/10.1093/ae/tmw006

    Article  Google Scholar 

  104. Poinar GO Jr (2018) Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. Hist Biol 31:1304–1209. https://doi.org/10.1080/08912963.2018.1446531

    Article  Google Scholar 

  105. Poinar GO Jr, Brown AE (2017) An exotic insect Aethiocarenus burmanicus gen. et sp. nov. (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from Mid-Cretaceous Myanmar amber. Cretac Res 72:100–104. https://doi.org/10.1016/j.cretres.2016.12.011

    Article  Google Scholar 

  106. Poinar GO Jr, Poinar R (2004) Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber. Protist 155:305–310. https://doi.org/10.1078/1434461041844259

    Article  PubMed  Google Scholar 

  107. Poinar GO Jr, Telford SR Jr (2005) Paleohaemoproteus burmacis gen. n., sp. n. (Haemospororida: Plasmodiidae) from an Early Cretaceous biting midge (Diptera: Ceratopogonidae). Parasitology 131:79–84. https://doi.org/10.1017/S0031182005007298

    Article  PubMed  Google Scholar 

  108. Poinar GO Jr, Vega FE (2019) Mid-Cretaceous cellular slime mold (Eukarya: Dictyostelia?) in Burmese amber. Hist Biol. https://doi.org/10.1080/08912963.2019.1658095

  109. Poinar GO Jr, Waggoner BM, Bauer UC (1993) Terrestrial soft-bodied protists and other microorganisms in Triassic amber. Science 259:222–224. https://doi.org/10.1126/science.259.5092.222

    Article  PubMed  Google Scholar 

  110. Poinar G, Lambert JB, Wu Y (2007) Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J Bot Res Inst Texas 1:449–455

    Google Scholar 

  111. Provencio PP, Polyak VJ (2001) Iron oxide-rich filaments: possible fossil Bacteria in Lechuguilla Cave, New Mexico. Geomicrobiol J 18:297–309. https://doi.org/10.1080/01490450152467804

    CAS  Article  Google Scholar 

  112. Qiu L, Wang ZQ, Che YL (2019a) A new corydiid cockroach with large holoptic eyes in Upper Cretaceous Burmese amber (Blattodea: Corydiidae: Euthyrrhaphinae). Cretac Res 96:179–183. https://doi.org/10.1016/j.cretres.2018.12.018

    Article  Google Scholar 

  113. Qiu L, Wang ZQ, Che YL (2019b) First record of Blattulidae from Mid-Cretaceous Burmese amber (Insecta: Dictyoptera). Cretac Res 99:281–290. https://doi.org/10.1016/j.cretres.2019.03.011

    Article  Google Scholar 

  114. Qiu L, Liu YC, Wang ZQ, Che YL (2020) The first blattid cockroach (Dictyoptera: Blattodea) in Cretaceous amber and the reconsideration of purported Blattidae. Cretac Res 109:104359. https://doi.org/10.1016/j.cretres.2019.104359

    Article  Google Scholar 

  115. Quinney A, Mays C, Stilwell JD, Zelenitsky DK, Therrien F (2015) The range of bioinclusions and pseudoinclusions preserved in a new Turonian (~90 ma) amber occurrence from Southern Australia. PLoS One 10:e0121307. https://doi.org/10.1371/journal.pone.0121307

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Reichenbach HG (1828) Conspectus Regni Vegetabilis. apud C. Cnobloch, Lipsiae

  117. Ross A (1998) Amber: the natural time capsule. Natural History Museum, London

    Google Scholar 

  118. Ross AJ (2019) Burmese (Myanmar) amber taxa, on-line checklist v.2019.1. http://www.nms.ac.uk/explore/stories/natural-world/burmese-amber Accessed 25 May 2019

  119. Roth LM, Willis ER (1960) The biotic associations of cockroaches. Smithsonian Misc Coll 141:1–470. https://doi.org/10.1002/jps.2600500438

    Article  Google Scholar 

  120. Saussure H (1864) Memoires de la Société de physique et d’histoire naturelle de Genève. Soc de Phys et d’Hist Nat de Geneve 18:230

  121. Schlee D (1990) Das Bernstein–Kabinett, Begleitheft zur Bernsteinausstellung in Museum am Lowentor, Stuttgart. Stuttg Beitr Naturkd 28:–100

  122. Schleifer KH, Kilpper-Bälz R (1984) Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol 34:31–34. https://doi.org/10.1099/00207713-34-1-31

    Article  Google Scholar 

  123. Schmidt AR, Schäfer U (2005) Leptotrichites resinatus new genus and species: a fossil sheathed bacterium in Alpine Cretaceous amber. J Paleontol 79:175–184. https://doi.org/10.1666/0022-3360(2005)079<0175:LRNGAS>2.0.CO;2

    Article  Google Scholar 

  124. Schmidt AR, Ragazzi E, Coppellotti O, Roghi G (2006) A microworld in Triassic amber. Nature 444:835. https://doi.org/10.1038/444835a

    CAS  Article  PubMed  Google Scholar 

  125. Schmidt AR, Perrichot V, Svojtka M, Anderson KB, Belete KH, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E, Nascimbene PC, Nel A, Nel P, Ragazzi E, Roghi G, Saupe EE, Schmidt K, Schneider H, Selden PA, Vávra N (2010a) Cretaceous African life captured in amber. Proc Natl Acad Sci U S A 107:7329–7334. https://doi.org/10.1073/pnas.1000948107

    Article  PubMed  PubMed Central  Google Scholar 

  126. Schmidt AR, Dörfelt H, Struwe S, Perrichot V (2010b) Evidence for fungivory in Cretaceous amber forests from Gondwana and Laurasia. Palaeontogr Abt A Paläophytol 283:157–173. https://doi.org/10.1127/palb/283/2010/157

    Article  Google Scholar 

  127. Schönborn W, Dörfelt H, Foissner W, Krienitz L, Schäfer U (1999) A fossilized microcenosis in Triassic amber. J Eukaryot Microbiol 46:571–584. https://doi.org/10.1111/j.1550-7408.1999.tb05133.x

    Article  Google Scholar 

  128. Schubert K (1939) Mikroskopische Untersuchungen pflanzlicher Einschlüsse des Bernsteins I. Bernsteinforschungen 4:23–44

    Google Scholar 

  129. Seckbach J (1999) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  130. Sendi H, Azar D (2017) New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretac Res 72:13–17. https://doi.org/10.1016/j.cretres.2016.11.013

    Article  Google Scholar 

  131. Sendi H, Hinkelman J, Vršanská L, Kúdelová T, Kúdela M, Zuber M, Van de Kamp T, Vršanský P (2020) Roach nectarivory, gymnosperm and earliest flower pollination evidence from Cretaceous ambers. Biologia, in press:1–18. https://doi.org/10.2478/s11756-019-00412-x

  132. Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac Res 37:155–163. https://doi.org/10.1016/j.cretres.2012.03.014

    Article  Google Scholar 

  133. Šmídová L (2019) Unusual cockroaches (Blattidae) from Cenomanian Myanmar amber. Dissertation, Univerzita Karlova v Praze

  134. Šmídová L (2020) Cryptic bark cockroach (Blattinae: Bubosa poinari gen. et sp.nov.) from Mid-Cretaceous amber of northern Myanmar. Cretac Res, in press

  135. Šmídová L, Lei X (2017) The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretac Res 72:189–199. https://doi.org/10.1016/j.cretres.2017.01.008

    Article  Google Scholar 

  136. Smith GM (1955) Cryptogamic botany volume 1. Algae and Fungi. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  137. Stein E (1859) Characteristik neuer Infusorien- Gattungen. Lotos 9:2−5–57−60

    Google Scholar 

  138. Stein FR (1878) Der Organismus der Infusionsthiere, III, 1. Hälfte Flagellaten. Engelmann, Leipzig

    Google Scholar 

  139. Tazaki K, Ferris FG, Wiese RG, Fyfe WS (1992) Iron and graphite associated with fossil bacteria in chert. Chem Geol 95:313–325. https://doi.org/10.1016/0009-2541(92)90019-2

    CAS  Article  Google Scholar 

  140. Thiel V, Lausmaa J, Sjövall P, Ragazzi E, Seyfullah LJ, Schmidt AR (2016) Microbe–like inclusions in tree resins and implications for the fossil record of protists in amber. Geobiology 14:364–373. https://doi.org/10.1111/gbi.12180

    CAS  Article  PubMed  Google Scholar 

  141. Thiercelin E, Jouhaud L (1903) Reproduction de l’enterocoque; taches centrales; granulations peripheriques et microblastes. C R Seances Soc Biol 55:686–688

    Google Scholar 

  142. Toporski JKW, Steele A, Westall F, Avci R, Martill DM, Mckay DS (2002) Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochim Cosmochim Acta 66:1773–1791. https://doi.org/10.1016/S0016-7037(01)00870-5

    CAS  Article  Google Scholar 

  143. Veiga-Crespo P, Blasco L, Poza M, Villa T (2007) Putative ancient microorganisms from amber nuggets. Int Microbiol 10:117–122. https://doi.org/10.2436/20.1501.01.17

    CAS  Article  PubMed  Google Scholar 

  144. Vršanský P (2000) Decreasing variability-from the carboniferous to the present! (validated on independent lineages of Blattaria). Paleontol J 34:374–379

    Google Scholar 

  145. Vršanský P (2002) Origin and the early evolution of mantises. AMBA Projekty 6:1–16

    Google Scholar 

  146. Vršanský P (2003) Unique assemblage of Dictyoptera (Insecta-Blattaria, Mantodea, Isoptera, Mantodea) from the Lower Cretaceous of Bon Tsagaan Nuur in Mongolia. Entomol Problems 33:119–151

    Google Scholar 

  147. Vršanský P (2004a) Transitional Jurassic/Cretaceous cockroach assemblage (Insecta, Blattaria) from the Shar-Teg in Mongolia. Geol Carpath 55:457–468

    Google Scholar 

  148. Vršanský P (2004b) Cretaceous Gondwanian cockroaches (Insecta: Blattaria). Entomol Problems 34:49–54

    Google Scholar 

  149. Vršanský P (2005) Mass mutations of insects at the Jurassic/Cretaceous boundary? Geol Carpath 56:473–781

    Google Scholar 

  150. Vršanský P (2009) Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. Geodiversitas 31:73–98. https://doi.org/10.5252/g2009n1a7

    Article  Google Scholar 

  151. Vršanský P (2019) Santonian cockroaches from Yantardakh amber (Russia: Taimyr) differ in dominance. Palaeoentomology 002:297–307. https://doi.org/10.11646/palaeoentomology.2.3.15

    Article  Google Scholar 

  152. Vršanský P, Ansorge J (2007) Lower Jurassic cockroaches (Insecta: Blattaria) from Germany and England. Afr Invertebr 48:103–126

    Google Scholar 

  153. Vršanský P, Bechly G (2015) New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber. Geol Carpath 66:133–138. https://doi.org/10.1515/geoca-2015-0015

    Article  Google Scholar 

  154. Vršanský P, Wang B (2017) A new cockroach, with bipectinate antennae (Blattaria: Olidae fam. nov.) further highlights the differences between the Burmite and other faunas. Biologia 72:1327–1333. https://doi.org/10.1515/biolog-2017-0144

    Article  Google Scholar 

  155. Vršanský P, Vishniakova VN, Rasnitsyn AP (2002) Order Blattida Latreille, 1810. The cockroaches (=Blattodea Brunner von Wattenvill [sic], 1882). In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, pp 263–270

    Google Scholar 

  156. Vršanský P, Vidlička L, Barna P, Bugdaeva E, Markevich VS (2013a) Paleocene origin of the cockroach families Blaberidae and Corydiidae: evidence from Amur River region of Russia. Zootaxa 3635:117. https://doi.org/10.11646/zootaxa.3625.2.2

    Article  PubMed  Google Scholar 

  157. Vršanský P, van de Kamp T, Azar D, Prokin A, Vidlička L, Vagovič P (2013b) Cockroaches probably cleaned up after dinosaurs. PLoS One 8:e80560. https://doi.org/10.1371/journal.pone.0080560

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. Vršanský P, Oružinský R, Aristov D, Wei DD, Vidlička Ľ, Ren D (2017) Temporary deleterious mass mutations relate to originations of cockroach families. Biologia 72:886–912. https://doi.org/10.1515/biolog-2017-0096

    CAS  Article  Google Scholar 

  159. Vršanský P, Bechly G, Zhang Q, Jarzembowski EA, Mlynský T, Šmídová L, Barna P, Kúdela M, Aristov D, Bigalk S, Krogmann L, Li L, Zhang Q, Zhang H, Ellenberger S, Müller P, Gröhn C, Xia F, Ueda K, Vd’ačný P, Valaška D, Vršanská L, Wang B (2018) Batesian insect-insect mimicry-related explosive radiation of ancient alienopterid cockroaches. Biologia 73:987–1006. https://doi.org/10.2478/s11756-018-0117-3

    Article  Google Scholar 

  160. Vršanský P, Šmídová L, Sendi H, Barna P, Müller P, Ellenberger S, Wu H, Ren X, Lei X, Azar D, Šurka J, Su T, Deng W, Shen X, Jun L, Bao T, Bechly G (2019a) Parasitic cockroaches indicate complex states of earliest proved ants. Biologia 74:65–89. https://doi.org/10.2478/s11756-018-0146-y

    Article  Google Scholar 

  161. Vršanský P, Sendi H, Aristov D, Bechly G, Müller P, Ellenberger S, Azar D, Ueda K, Barna P, Garcia T (2019b) Ancient roaches further exemplify ‘no land return’ in aquatic insects. Gondwana Res 68:22–33. https://doi.org/10.1016/j.gr.2018.10.020

    Article  Google Scholar 

  162. Vršanský P, Vršanská L, Beňo M, Bao T, Lei X, Ren X, Wu H, Šmídová L, Bechly G, Jun L, Yeo M, Jarzembowski E (2019c) Pathogenic DWV infection symptoms in a Cretaceous cockroach. Palaeontogr Abt A Palaeozool-Stratigr 314:1–10. https://doi.org/10.1127/pala/2019/0084

    Article  Google Scholar 

  163. Vršanský P, Koubová I, Vršanská L, Hinkelman J, Kúdela M, Kúdelová T, Liang J-H, Xia F, Lei XJ, Ren XY, Vidlička Ĺ, Bao T, Ellenberger S, Šmídová L, Barclay M (2019d) Early wood-boring ‘mole roach’ reveals eusociality “missing ring”. AMBA Projekty 9:1–28

    Google Scholar 

  164. Wada-Katsumata A, Zurek L, Nalyanya G, Roelofs WL, Zhang A, Schal C (2015) Gut bacteria mediate aggregation in the German cockroach. Proc Natl Acad Sci U S A 112:15678–15683. https://doi.org/10.1073/pnas.1504031112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. Waggoner BM (1994) Fossil actinomycete in Eocene–Oligocene Dominican amber. J Paleontol 68:398–341. https://doi.org/10.1017/S0022336000022964

    Article  Google Scholar 

  166. Waggoner BM (1996) Bacteria and protists from the Middle Cretaceous amber of Ellsworth County, Kansas. PaleoBios 17:20–26

    Google Scholar 

  167. Walker F (1868) Catalogue of the specimens of Blattarie of the British Museum. British Museum (Natural History), London

    Google Scholar 

  168. Wang X, Zhang S, Wang H, Canfield DE, Su J, Hammarlund EU, Bian L (2017) Remarkable preservation of microfossils and biofilms in Mesoproterozoic silicified bitumen concretions from Northern China. Geofluids 2017:1–12. https://doi.org/10.1155/2017/4818207

    CAS  Article  Google Scholar 

  169. Warming E (1884) Haandbog i den systematiske botanik: naermest til brug for laerere og universitets-studerende. P.G. Philipsens, Kjøbenhavn

    Google Scholar 

  170. Wei D, Ren D (2013) Completely preserved cockroaches of the family Mesoblattinidae from the Upper Jurassic-Lower Cretaceous Yixian formation (Liaoning Province, NE China). Geol Carpath 64:291–304. https://doi.org/10.2478/geoca-2013-0021

    Article  Google Scholar 

  171. Weidner H (1956) Kotballen von Termiten im Bernstein. Veröff Übersee-Mus Bremen 2(A):363–364

    Google Scholar 

  172. West GS, Fritsch FE (1927) A treatise on the British freshwater algae in which are included all the pigmented Protophyta hitherto found in British freshwaters. Cambridge University Press, Cambridge

    Google Scholar 

  173. Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L (2002) Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proc Natl Acad Sci U S A 99:1410–1413. https://doi.org/10.1073/pnas.022643899

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  174. Willis JC, Airy Shaw HK (1973) A dictionary of the flowering plants and ferns, 8th edn. Cambridge University Press, Cambridge

    Google Scholar 

  175. Wrześniowski A (1870) Beobachtungen über Infusorien aus der Umgebung von Warschau. Z Wiss Zool 20:467–511

    Google Scholar 

  176. Wunderlich J (2004) Fossil spiders in amber and copal. Conclusions, revisions, new taxa and family diagnoses of fossil and extant taxa. Beitr Araneol 3AB:1–1908

    Google Scholar 

  177. Zheng D, Chang SC, Perrichot V, Dutta S, Rudra A, Mu L, Kelly RS, Li S, Zhang Q, Zhang Q, Wong J, Wang J, Wang H, Fang Y, Zhang H, Wang B (2018) A Late Cretaceous amber biota from Central Myanmar. Nat Commun 9:3170. https://doi.org/10.1038/s41467-018-05650-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. Zherikhin VV (2003) Insect trace fossils, their diversity, classification and scientific importance. Acta Zool Cracov 46:59–66

    Google Scholar 

  179. Zou Y, Wenzel S, Müller N, Prager K, Jung EM, Kothe E, Kottke T, Mittag M (2017) An animal-like Cryptochrome controls the Chlamydomonas sexual cycle. Plant Physiol 174:1334–1347. https://doi.org/10.1104/pp.17.00493

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Peter Vršanský (ESISAS Bratislava) for advice and Lubomír Vidlička (IZ SAS Bratislava) for support. We also thank anonymous reviewers for their work, advice, and valuable suggestions. We thank Sighard Ellenberger (private, Germany) for collecting specimens, Kamil Fekete (ESISAS Bratislava) for technical help, Peter Vďačný (Comenius University, Bratislava) for preliminary protist determinations, Professor emeritus George Poinar Jr. (Oregon State University, Corvallis) for subsequent determination suggestions, and Professor Bo Wang (NIGPAS Nanjing) for enabling us to study paratypes.

Funding

This work was supported by the Slovak Research and Development Agency under the contracts no. APVV-0436-12; VEGA 2/0042/18 and by the UNESCO-Amba/MVTS for supporting grant of Presidium of the Slovak Academy of Sciences.

Author information

Affiliations

Authors

Contributions

L. V. designed, elaborated, and performed microscopic observations. J. H. performed the main research.

Corresponding author

Correspondence to Jan Hinkelman.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Dany Azar

Electronic supplementary material

ESM 1

(DOC 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hinkelman, J., Vršanská, L. A Myanmar amber cockroach with protruding feces contains pollen and a rich microcenosis. Sci Nat 107, 13 (2020). https://doi.org/10.1007/s00114-020-1669-y

Download citation

Keywords

  • Fossil insect
  • Fecal
  • Ichnofossil
  • Bacteria
  • Endosymbionts
  • Upper Cretaceous