Skip to main content
Log in

Does aridity affect spatial ecology? Scaling of home range size in small carnivorous marsupials

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

The aim of our study was to determine how body mass affects home range size in carnivorous marsupials (dasyurids) and whether those species living in desert environments require relatively larger areas than their mesic counterparts. The movement patterns of two sympatric species of desert dasyurids (body mass 16 and 105 g) were investigated via radio-telemetry in southwestern Queensland and compared with published records for other Australian dasyurids. Both species monitored occupied stable home ranges. For all dasyurids, home range size scaled with body mass with a coefficient of > 1.2, almost twice that for metabolic rate. Generally, males occupied larger home ranges than females, even after accounting for the size dimorphism common in dasyurids. Of the three environmental variables tested, primary productivity and habitat, a categorical variable based on the 500 mm rainfall isopleth, further improved model performance demonstrating that arid species generally occupy larger home ranges. Similar patterns were still present in the dataset after correcting for phylogeny. Consequently, the trend towards relatively larger home ranges with decreasing habitat productivity can be attributed to environmental factors and was not a result of taxonomic affiliation. We therefore conclude that alternative avenues to reduce energy requirements on an individual and population level (i.e. torpor, basking and population density) do not fully compensate for the low resource availability of deserts demanding an increase in home range size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrew D (2005) Ecology of the tiger quoll Dasyurus maculatus maculatus in coastal New South Wales. M.Sc., University of Wollongong

  • Belcher CA, Darrant JP (2004) Home range and spatial organization of the marsupial carnivore, Dasyurus maculatus maculatus (Marsupialia: Dasyuridae) in South-Eastern Australia. J Zool (Lond) 262:271–280

    Article  Google Scholar 

  • Bengsen AJ, Algar D, Ballard G, Buckmaster T, Comer S, Fleming PJS, Friend JA, Johnston M, McGregor H, Moseby K, Zewe F (2016) Feral cat home-range size varies predictably with landscape productivity and population density. J Zool 298:112–120. https://doi.org/10.1111/jzo.12290

    Article  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2008) The delayed rise of present-day mammals. Nature 456:274–274

    Article  CAS  Google Scholar 

  • Bos DG, Carthew SM (2008) Patterns of movement in the small dasyurid (Ningaui yvonneae). Aust J Zool 55:299–307. https://doi.org/10.1071/ZO06055

    Article  Google Scholar 

  • Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mamm 24:538–544

    Article  Google Scholar 

  • Burnett SE (2001) Ecology and conservation status of the northern spot-tailed quoll, Dasyurus maculatus with reference to the future of Australia's marsupial carnivores. PhD, James Cook University

  • Churchill S (2001) Survey and ecological study of the sandhill dunnart, Sminthopsis psammophila, at Eyre peninsula and the Great Victoria Desert. Report for the South Australian Department for Environment and Heritage, Biodiversity Conservation Programs

  • Claridge AW, Paull D, Dawson J, Mifsud G, Murray AJ, Poore R, Saxon MJ (2005) Home range of the spotted-tailed quoll (Dasyurus maculatus), a marsupial carnivore, in a rainshadow woodland. Wildl Res 32:7–14

    Article  Google Scholar 

  • Cook A (2010) Habitat use and home-range of the northern quoll, Dasyurus hallucatus: effects of fire. M.Sc., University of Western Australia

  • Cooper CE, Withers PC (2010) Comparative physiology of Australian quolls (Dasyurus; Marsupialia). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 180:857–868

    Article  Google Scholar 

  • Dickman CR (2003) Distributional ecology of dasyurid marsupials. In: Jones M, Dickman CR, Archer M (eds) Predators with pouches: the biology of carnivorous marsupials. CSIRO Publishing, Collingwood, pp 318–331

  • Dickman CR, Predavec M, Downey FJ (1995) Long-range movements of small mammals in arid Australia: implications for land management. J Arid Environ 31:441–452

    Article  Google Scholar 

  • Fisher DO, Owens IPF (2000) Female home range size and the evolution of social organization in macropod marsupials. J Anim Ecol 69:1083–1098

    Article  Google Scholar 

  • Geiser F (1988) Daily torpor and thermoregulation in Antechinus (Marsupialia): influence of body mass, season, development, reproduction, and sex. Oecologia 77:395–399

    Article  Google Scholar 

  • Geiser F (1994) Hibernation and daily torpor in marsupials: a review. Aust J Zool 42(1):16

    Article  Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Article  Google Scholar 

  • Geiser F, Drury RL, Körtner G, Turbill C, Pavey CR, Brigham RM (2004) Passive rewarming from torpor in mammals and birds: energetic, ecological and evolutionary implications. In: Barnes M, Carey HV (eds) Life in the Cold: Evolution, Mechanisms, Adaptation, and Application, vol 27. Biological Papers of the University of Alaska, Fairbanks, pp 51–62

  • Geiser F, Goodship N, Pavey CR (2002) Was basking important in the evolution of mammalian endothermy? Naturwissenschaften 89:412–414

    Article  CAS  Google Scholar 

  • Glen AS, Dickman CR (2006) Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia. J Zool 268:347–354

    Article  Google Scholar 

  • Godsell J (1983) Ecology of the eastern quoll Dasyurus viverrinus, (Dasyuridae: Marsupialia). PhD, Australian National University

  • Gompper ME, Gittleman JL (1991) Home range scaling - intraspecific and comparative trends. Oecologia 87:343–348

    Article  Google Scholar 

  • Harestad AS, Bunnell FL (1979) Home ranges and body weight – a reevaluation. Ecology 60:389–402

    Article  Google Scholar 

  • Hooge PN, Eichenlaub B (1997) Animal movement extension to Arcview, version 1.1 edn. Biological Science Office, US Geological Survey, Anchorage

  • Hume ID (2003) Nutrition of carnivorous marsupials. In: Jones M, Dickman CR, Archer M (eds) Predators with pouches: the biology of carnivorous marsupials. CSIRO Publishing, Collingwood, pp 221–228

  • Jenkins SH (1981) Common patterns in home range-body size relationships of birds and mammals. Am Nat 118:126–128

    Article  Google Scholar 

  • Kelt DA, Van Vuren DH (2001) The ecology and macroecology of mammalian home range area. Am Nat 157:637–645

    Article  CAS  Google Scholar 

  • Körtner G, Geiser F (2009) The key to winter survival: daily torpor in a small arid-zone marsupial. Naturwissenschaften 96:525–530

    Article  Google Scholar 

  • Körtner G, Geiser F (2011) Activity and torpor in two sympatric Australian desert marsupials. J Zool 283:249–256. https://doi.org/10.1111/j.1469-7998.2010.00766.x

    Article  Google Scholar 

  • Körtner G, Gresser S, Mott B, Tamayo B, Pisanu P, Bayne P, Harden B (2004) Population structure, turnover and movement of spotted-tailed quolls on the New England tablelands. Wildl Res 31:475–484

    Article  Google Scholar 

  • Körtner G, Pavey CR, Geiser F (2007) Spatial ecology of the mulgara in arid Australia: impact of fire history on home range size and burrow use. J Zool 273:350–357

    Article  Google Scholar 

  • Körtner G, Pavey CR, Geiser F (2008) Thermal biology, torpor, and activity in free-living mulgaras in arid zone Australia during the winter reproductive season. Physiol Biochem Zool 81:442–451

    Article  Google Scholar 

  • Körtner G, Rojas AD, Geiser F (2010) Thermal biology, torpor use and activity patterns of a small diurnal marsupial from a tropical desert: sexual differences. J Comp Physiol B 180:869–876

    Article  Google Scholar 

  • Körtner G, Riek A, Pavey CR, Geiser F (2016) Activity patterns and torpor in two free-ranging carnivorous marsupials in arid Australia in relation to precipitation, reproduction, and ground cover J Mamm 97:1555–1564. https://doi.org/10.1093/jmammal/gyw113

    Article  Google Scholar 

  • Laidlaw WS, Hutchings S, Newell GR (1996) Home range and movement patterns of Sminthopsis leucopus (Marsupialia: Dasyuridae) in coastal dry heathland, Anglesea, Victoria. Aust Mamm 19:1–9

    Google Scholar 

  • Lazenby-Cohen KA, Cockburn A (1991) Social and foraging components of the home range in Antechinus stuartii (Dasyuridae: Marsupialia). Aust J Ecol 16:301–307

    Article  Google Scholar 

  • Letnic M (2002) Long distance movements and the use of fire mosaics by small mammals in the Simpson Desert, Central Australia. Aust Mamm 23:125–134

    Article  Google Scholar 

  • Lindstedt SL, Miller BJ, Buskirk SW (1986) Home range, time, and body size in mammals. Ecology 67:413–418

    Article  Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    Article  Google Scholar 

  • Mace GM, Harvey PH (1983) Energetic constraints on home-range size. Am Nat 121:120–132

    Article  Google Scholar 

  • Masters P (1993) The effects of fire-driven succession and rainfall on small mammals in spinifex grassland ant Uluru National Parks, Northern Territory. Wildl Res 20:803–813

    Article  Google Scholar 

  • Masters P (2003) Movement patterns and spatial organisation of the mulgara, Dasycercus cristicauda (Marsupialia: Dasyuridae), in Central Australia. Wildl Res 30:339–344

    Article  Google Scholar 

  • McNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 116:97–141

    Google Scholar 

  • Morton SR (1978a) An ecological study of Sminthopsis crassicaudata (Marsupialia: Dasyuridae) II. Behaviour and social organisation. Aust Wildl Res 5:163–182

    Article  Google Scholar 

  • Morton SR (1978b) Torpor and nest-sharing in free-living Sminthopsis crassicaudata (Marsupialia) and Mus musculus (Rodentia). J Mamm 59:569–575

    Article  Google Scholar 

  • Nagy KA, Girard IA, Brown TK (1999) Energetics of free-ranging mammals, reptiles, and birds. Ann Rev Nutr 19:247–277. https://doi.org/10.1146/annurev.nutr.19.1.247

    Article  CAS  Google Scholar 

  • Newsome TM, Spencer EE, Dickman CR (2017) Short-term tracking of three red foxes in the Simpson Desert reveals large home-range sizes. Aust Mamm 39:238–242. https://doi.org/10.1071/AM16037

    Article  Google Scholar 

  • Oakwood M (2002) Spatial and social organisation of a carnivorous marsupial Dasyurus hallucatus (Marsupialia: Dasyuridae). J Zool (Lond) 257:237–248

    Article  Google Scholar 

  • Ottaviani D, Cairns SC, Oliverio M, Boitani L (2006) Body mass as a predictive variable of home-range size among Italian mammals and birds. J Zool 269:317–330

    Article  Google Scholar 

  • Pavey CR, Goodship N, Geiser F (2003) Home range and spatial organisation of rock-dwelling carnivorous marsupial, Pseudantechinus macdonnellensis. Wildl Res 30:135–142

    Article  Google Scholar 

  • Perry G, Garland T (2002) Lizard home ranges revisited: effects of sex, body size, diet, habitat, and phylogeny. Ecology 83:1870–1885

    Article  Google Scholar 

  • Pemberton D (1990) Social organisation and behaviour of the Tasmanian devil, Sarcophilus harrisi. PhD, University of Tasmania

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M, Kausrud K (2011) The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim Res 46:15–27

    Article  Google Scholar 

  • Rayner K, Chambers B, Johnson B, Morris KD, Mills HR (2012) Spatial and dietary requirements of the chuditch (Dasyurus geoffroii) in a semiarid climatic zone. Aust Mamm 34:59–67. https://doi.org/10.1071/AM10045

    Article  Google Scholar 

  • Read DG (1984) Movements and home ranges of three sympatric dasyurids, Sminthopsis crassicaudata, Planigale gilesi and P. tenuirostris (Marsupialia), in semiarid western New South Wales. Aust Wildl Res 11:223–234

    Article  Google Scholar 

  • Rhind SG, Bradley JS (2002) The effect of drought on body size, growth and abundance of wild brush-tailed phascogales (Phascogale tapoatafa) in south-western Australia. Wildl Res 29:235–245. https://doi.org/10.1071/WR01014

    Article  Google Scholar 

  • Riek A (2008) Relationship between field metabolic rate and body weight in mammals: effect of the study. J Zool 276:187–194

    Article  Google Scholar 

  • Rojas AD, Körtner G, Geiser F (2010) Do implanted transmitters affect maximum running speed of two small marsupials? J Mamm 91:1360–1364. https://doi.org/10.1644/10-MAMM-A-052.1

    Article  Google Scholar 

  • Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev 90:891–926

    Article  Google Scholar 

  • Sale MG, Arnould JPY (2009) Spatial and temporal organization in the swamp antechinus: comparison between island and mainland populations. J Mamm 90:347–355

    Article  Google Scholar 

  • Sanecki GM, Green K, Wood H, Lindenmayer D, Sanecki KL (2006) The influence of snow cover on home range and activity of the bush-rat (Rattus fuscipes) and the dusky antechinus (Antechinus swainsonii). Wildl Res 33:489–496

    Article  Google Scholar 

  • Schmidt-Nielsen K (1972) How animals work. Cambridge University Press, London

    Book  Google Scholar 

  • Serena M, Soderquist TR (1988) Growth and developement of pouch young of wild and captive Dasyurus geoffroii (Marsupialia: Dasyuridae). Aust J Zool 36:533–543

    Article  Google Scholar 

  • Serena M, Soderquist TR (1989) Spatial organization of a riparian populations of the carnivorous marsupial Dasyurus geoffroii. J Zool (Lond) 219:373–383

    Article  Google Scholar 

  • Soderquist TR (1995) Spatial organization of the arboreal carnivorous marsupial Phascogale tapoatafa. J Zool 237:385–398

    Article  Google Scholar 

  • Stawski C, Körtner G, Nowack J, Geiser F (2015) The importance of mammalian torpor for survival in a post-fire landscape. Biol Lett 11:20150134. https://doi.org/10.1098/rsbl.2015.0134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker VA (1970) Energetic cost of locomotion in animals. Comp Biochem Physiol 34:841–846. https://doi.org/10.1016/0010-406X(70)91006-6

    Article  CAS  PubMed  Google Scholar 

  • Tyndale-Biscoe H (2005) Life of marsupials. CSIRO Publishing, Collingwood

    Book  Google Scholar 

  • van der Ree R, Soderquist TR, Bennett AF (2001) Home-range use by the brush-tailed phascogale (Phascogale tapoatafa) (Marsupialia) in high-quality, spatially limited habitat. Wildl Res 28:517–525

    Article  Google Scholar 

  • Warnecke L, Körtner G, Burwell CJ, Turner JM, Geiser F (2012) Short-term movement patterns and diet of small dasyurid marsupials in semiarid Australia. Aust Mamm 34:49–54. https://doi.org/10.1071/AM10052

    Article  Google Scholar 

  • Warnecke L, Turner JM, Geiser F (2008) Torpor and basking in a small arid zone marsupial. Naturwissenschaften 95:73–78

    Article  CAS  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci U S A 100:4046–4049

    Article  CAS  Google Scholar 

  • Withers PC, Cooper CE, Larcombe AN (2006) Environmental correlates of physiological variables in marsupials. Physiol Biochem Zool 79:437–453

    Article  CAS  Google Scholar 

  • Woolley PA (2017) Diurnal resting sites of the nocturnal dasyurid marsupial Sminthopsis douglasi in Bladensburg National Park, Queensland. Aust Mamm 39:121–126. https://doi.org/10.1071/AM16013

    Article  Google Scholar 

Download references

Acknowledgements

Fieldwork was conducted under permits form the Queensland Environmental Protection Agency and University of New England (UNE) Animal Ethics Committee. Paul Story assisted with trapping and radio-tracking. Phil Withers and Christine Cooper provided us statistical advice for the analysis of independent contrasts and Stuart Cairns with other statistical procedures. The study was supported by the Australian Research Council to F.G. and a fellowship from the Vice Chancellor of UNE to G. K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Körtner.

Additional information

Communicated by: Matthias Waltert

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körtner, G., Trachtenberg, A. & Geiser, F. Does aridity affect spatial ecology? Scaling of home range size in small carnivorous marsupials. Sci Nat 106, 42 (2019). https://doi.org/10.1007/s00114-019-1636-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-019-1636-7

Keywords

Navigation