Plant origin authentication of Sonoran Desert propolis: an antiproliferative propolis from a semi-arid region

Abstract

The main chemical composition of Sonoran propolis (SP), as well as its antiproliferative activity on cancer cells through apoptosis induction, has been reported. The chemical constitution of SP remained qualitatively similar throughout the year, whereas the antiproliferative effect on cancer cells exhibited significant differences amongst seasonal samples. The main goal of this study was to provide phytochemical and pharmacological evidence for the botanical source of SP and its antiproliferative constituents. A chemical comparative analysis of SP and plant resins of species found in the surrounding areas of the beehives was carried out by HPLC-UV-DAD, as well as by 1H NMR experiments. The antiproliferative activity on cancerous (M12.C3.F6, HeLa, A549, PC-3) and normal cell lines (L-929; ARPE-19) was assessed through MTT assays. Here, the main polyphenolic profile of SP resulted to be qualitatively similar to Populus fremontii resins (PFR). However, the antiproliferative activity of PFR on cancer cells did not consistently match that exhibited by SP throughout the year. Additionally, SP induced morphological modifications on treated cells characterised by elongation, similar to those induced by colchicine, and different to those observed with PFR treatment. These results suggest that P. fremontii is the main botanical source of SP along the year. Nevertheless, the antiproliferative constituents of SP that induce that characteristic morphological elongation on treated cells are not obtained from PFR. Moreover, the presence of kaempferol-3-methyl-ether in SP could point Ambrosia ambrosioides as a secondary plant source. In conclusion, SP is a bioactive poplar-type propolis from semi-arid zones, in which chemical compounds derived from other semi-arid plant sources than poplar contribute to its antiproliferative activity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

SP:

Sonoran propolis

PFR:

Populus fremontii resins

AAR:

Ambrosia ambrosioides resins

BLR:

Bursera laxiflora resins

CAPE:

Caffeic acid phenethyl ester

5-FU:

5-Fluorouracil

References

  1. Alday E, Valencia D, Carreño AL, Picerno P, Piccinelli AL, Rastrelli L, Robles-Zepeda R, Hernandez J, Velazquez C (2015) Apoptotic induction by pinobanksin and some of its ester derivatives from Sonoran propolis in a B-cell lymphoma cell line. Chem Biol Interact 242:35–44. https://doi.org/10.1016/j.cbi.2015.09.013

    CAS  Article  PubMed  Google Scholar 

  2. Bankova V (2005) Recent trends and important developments in propolis research. Evidence-based Complement Altern Med 2:29–32. https://doi.org/10.1093/ecam/neh059

    Article  Google Scholar 

  3. Bankova V, Bertelli D, Borba R, Conti BJ, da Silva Cunha IB, Danert C, Eberlin MN, I Falcão S, Isla MI, Moreno MIN, Papotti G, Popova M, Santiago KB, Salas A, Sawaya ACHF, Schwab NV, Sforcin JM, Simone-Finstrom M, Spivak M, Trusheva B, Vilas-Boas M, Wilson M, Zampini C (2016) Standard methods for Apis mellifera propolis research. J Apic Res 8839:1–49. https://doi.org/10.1080/00218839.2016.1222661

    Article  Google Scholar 

  4. Bankova V, Boudourova-Krasteva G, Sforcin JM, Frete X, Kujumgiev A, Maimoni-Rodella R, Popov S (1999) Phytochemical evidence for the plant origin of Brazilian propolis from Sao Paulo state. Z Naturforsch C 54:401–405. https://doi.org/10.1515/znc-1999-5-616

    CAS  Article  PubMed  Google Scholar 

  5. Bertelli D, Papotti G, Bortolotti L, Marcazzan GL, Plessi M (2012) 1H-NMR simultaneous identification of health-relevant compounds in propolis extracts. Phytochem Anal 23:260–266. https://doi.org/10.1002/pca.1352

    CAS  Article  PubMed  Google Scholar 

  6. Bueno-Silva B, Marsola A, Ikegaki M, Alencar SM, Rosalen PL (2017) The effect of seasons on Brazilian red propolis and its botanical source: chemical composition and antibacterial activity. Nat Prod Res 31:1318–1324. https://doi.org/10.1080/14786419.2016.1239088

    CAS  Article  PubMed  Google Scholar 

  7. Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363. https://doi.org/10.1016/S0278-6915(97)00145-2

    CAS  Article  PubMed  Google Scholar 

  8. Catchpole O, Mitchell K, Bloor S, Davis P, Suddes A (2015) Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells. Fitoterapia 106:167–174. https://doi.org/10.1016/j.fitote.2015.09.004

    CAS  Article  PubMed  Google Scholar 

  9. Conti BJ, Santiago KB, Búfalo MC, Herrera YF, Alday E, Velazquez C, Hernandez J, Sforcin JM (2015) Modulatory effects of propolis samples from Latin America (Brazil, Cuba and Mexico) on cytokine production by human monocytes. J Pharm Pharmacol 67:1431–1438. https://doi.org/10.1111/jphp.12431

    CAS  Article  PubMed  Google Scholar 

  10. Falcão SI, Tomás A, Vale N, Gomes P, Freire C, Vilas-Boas M (2013a) Phenolic quantification and botanical origin of Portuguese propolis. Ind Crop Prod 49:805–812. https://doi.org/10.1016/j.indcrop.2013.07.021

    CAS  Article  Google Scholar 

  11. Falcão SI, Vale N, Gomes P, Domingues MRM, Freire C, Cardoso SM, Vilas-Boas M (2013b) Phenolic profiling of Portuguese propolis by LC-MS spectrometry: uncommon propolis rich in flavonoid glycosides. Phytochem Anal 24:309–318. https://doi.org/10.1002/pca.2412

    CAS  Article  PubMed  Google Scholar 

  12. Ghisalberti EL (1979) Propolis: a review. Bee World 60:59–84. https://doi.org/10.1080/0005772X.1979.11097738

    CAS  Article  Google Scholar 

  13. Gigant B, Cormier A, Dorléans A et al (2009) Microtubule-destabilizing agents: structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. In: Topics in current chemistry, pp 259–278

    Google Scholar 

  14. Grunberger D, Banerjee R, Eisinger K, Oltz EM, Efros L, Caldwell M, Estevez V, Nakanishi K (1988) Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44:230–232. https://doi.org/10.1007/BF01941717

    CAS  Article  PubMed  Google Scholar 

  15. Hernandez J, Goycoolea FM, Quintero J, Acosta A, Castañeda M, Dominguez Z, Robles R, Vazquez-Moreno L, Velazquez E, Astiazaran H, Lugo E, Velazquez C (2007) Sonoran propolis: chemical composition and antiproliferative activity on cancer cell lines. Planta Med 73:1469–1474. https://doi.org/10.1055/s-2007-990244

    CAS  Article  PubMed  Google Scholar 

  16. Inui S, Hosoya T, Kumazaw S (2014) Hawaiian propolis: comparative analysis and botanical origin. Nat Prod Commun 9:165–166

    CAS  PubMed  Google Scholar 

  17. Kumazawa S, Hamasaka T, Nakayama T (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84:329–339. https://doi.org/10.1016/S0308-8146(03)00216-4

    CAS  Article  Google Scholar 

  18. Kumazawa S, Nakamura J, Murase M, Miyagawa M, Ahn MR, Fukumoto S (2008) Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis. Naturwissenschaften 95:781–786. https://doi.org/10.1007/s00114-008-0383-y

    CAS  Article  PubMed  Google Scholar 

  19. Lotti C, Fernandez MC, Piccinelli AL et al (2010) Chemical constituents of red Mexican propolis. J Agric Food Chem 58:2209–2213. https://doi.org/10.1021/jf100070w

    CAS  Article  PubMed  Google Scholar 

  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Nina N, Quispe C, Jiménez-Aspee F, Theoduloz C, Feresín G, Lima B, Leiva E, Schmeda-Hirschmann G (2015) Antibacterial activity, antioxidant effect and chemical composition of propolis from the Región del Maule, central Chile. Molecules 20:18144–18167. https://doi.org/10.3390/molecules201018144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Nina N, Quispe C, Jiménez-Aspee F, Theoduloz C, Giménez A, Schmeda-Hirschmann G (2016) Chemical profiling and antioxidant activity of Bolivian propolis. J Sci Food Agric 96:2142–2153. https://doi.org/10.1002/jsfa.7330

    CAS  Article  PubMed  Google Scholar 

  23. NORMA Oficial Mexicana NOM-003-SAG/GAN-2017, Propóleos, producción y especificaciones para su procesamiento. Diario Oficial de la Federación. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Ciudad de México, 2017. http://dof.gob.mx/nota_to_doc.php?codnota=5500103. Accessed 6 Oct 2017

  24. Oliveira LPG, Conte FL, Cardoso E de O et al (2016) Immunomodulatory/inflammatory effects of geopropolis produced by Melipona fasciculata Smith in combination with doxorubicin on THP-1 cells. J Pharm Pharmacol 68:1551–1558. https://doi.org/10.1111/jphp.12649

    CAS  Article  PubMed  Google Scholar 

  25. Piccinelli AL, Fernandez MC, Cuesta-Rubio O et al (2005) Isoflavonoids isolated from cuban propolis. J Agric Food Chem 53:9010–9016. https://doi.org/10.1021/jf0518756

    CAS  Article  PubMed  Google Scholar 

  26. Piccinelli AL, Mencherini T, Celano R, Mouhoubi Z, Tamendjari A, Aquino RP, Rastrelli L (2013) Chemical composition and antioxidant activity of Algerian propolis. J Agric Food Chem 61:5080–5088. https://doi.org/10.1021/jf400779w

    CAS  Article  PubMed  Google Scholar 

  27. Picerno P, Mencherini T, Sansone F, del Gaudio P, Granata I, Porta A, Aquino RP (2011) Screening of a polar extract of Paeonia rockii: composition and antioxidant and antifungal activities. J Ethnopharmacol 138:705–712. https://doi.org/10.1016/j.jep.2011.09.056

    CAS  Article  PubMed  Google Scholar 

  28. Sawicka D, Car H, Borawska MH, Nikliński J (2012) The anticancer activity of propolis. Folia Histochem Cytobiol 50:25–37. https://doi.org/10.5603/FHC.2012.0004

    CAS  Article  PubMed  Google Scholar 

  29. Sforcin J (2016) Biological properties and therapeutic applications of propolis. Phyther Res 30:894–905. https://doi.org/10.1002/ptr.5605

    Article  Google Scholar 

  30. Sforcin JM, Bankova V (2011) Propolis: is there a potential for the development of new drugs? J Ethnopharmacol 133:253–260. https://doi.org/10.1016/j.jep.2010.10.032

    CAS  Article  PubMed  Google Scholar 

  31. Sforcin JM, Fernandes Júnior A, Lopes CAM et al (2001) Seasonal effect of brazilian propolis on Candida albicans and Candida tropicalis. J Venom Anim Toxins 7:139–144. https://doi.org/10.1590/S0104-79302001000100009

    CAS  Article  Google Scholar 

  32. Sforcin JM, Fernandes A, Lopes CAM et al (2000) Seasonal effect on Brazilian propolis antibacterial activity. J Ethnopharmacol 73:243–249. https://doi.org/10.1016/S0378-8741(00)00320-2

    CAS  Article  PubMed  Google Scholar 

  33. Shreve F, Wiggins IL (1964) Vegetation and flora of the Sonoran Desert, vol I. Original E. Stanford University Press, Stanford

    Google Scholar 

  34. Simone-Finstrom M, Borba RS, Wilson M, Spivak M (2017) Propolis counteracts some threats to honey bee health. Insects 8. https://doi.org/10.3390/insects8020046

    Article  Google Scholar 

  35. Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311. https://doi.org/10.1051/apido/2010016

    Article  Google Scholar 

  36. Solorzano ER, Bortolini C, Bogialli S, di Gangi IM, Favaro G, Maldonado L, Pastore P (2017) Use of a LC-DAD-QTOF system for the characterization of the phenolic profile of the argentinean plant Zuccagnia punctata and of the related propolis: new biomarkers. J Funct Foods 33:425–435. https://doi.org/10.1016/j.jff.2017.04.003

    CAS  Article  Google Scholar 

  37. Valencia D, Alday E, Robles-Zepeda R, Garibay-Escobar A, Galvez-Ruiz JC, Salas-Reyes M, Jiménez-Estrada M, Velazquez-Contreras E, Hernandez J, Velazquez C (2012) Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chem 131:645–651. https://doi.org/10.1016/j.foodchem.2011.08.086

    CAS  Article  Google Scholar 

  38. Velazquez C, Navarro M, Acosta A, Angulo A, Dominguez Z, Robles R, Robles-Zepeda R, Lugo E, Goycoolea FM, Velazquez EF, Astiazaran H, Hernandez J (2007) Antibacterial and free-radical scavenging activities of Sonoran propolis. J Appl Microbiol 103:1747–1756. https://doi.org/10.1111/j.1365-2672.2007.03409.x

    CAS  Article  PubMed  Google Scholar 

  39. Wilson MB, Pawlus AD, Brinkman D, Gardner G, Hegeman AD, Spivak M, Cohen JD (2017) 3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis. Phytochemistry 138:83–92. https://doi.org/10.1016/j.phytochem.2017.02.020

    CAS  Article  PubMed  Google Scholar 

  40. Wollenweber E, Buchmann SL (1997) Feral honey bees in the Sonoran Desert: propolis sources other than poplars (Populus spp.). Z Naturforsch C 52:530–535

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would thank José Jesús Sánchez-Escalante (Curator of the University of Sonora Herbarium), Lucila Rascon and Judith Valdez for their participation and technical support in the development of this study, as well as the professional beekeeper Gilberto Valenzuela for his long-standing collaboration. Efrain Alday acknowledges CONACYT (Mexico) for a scholarship granted.

Author information

Affiliations

Authors

Contributions

The project idea was conceived by JH and CV. EA, RERZ, JH and CV designed all the experiments. Acquisition of experiments was performed by EA, JLMV and JAGA. Data analysis and interpretation were carried out by EA, JLMV, JAGA, DV, ZDE, ALP, LR and AGE. The initial draft of the manuscript was written by EA, JH and CV. ALP, LR and RERZ performed a critical revision that significantly improved the work. All the authors revised and approved the final version of this manuscript.

Corresponding authors

Correspondence to Javier Hernandez or Carlos Velazquez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Lars Koerner

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alday, E., Valencia, D., Garibay-Escobar, A. et al. Plant origin authentication of Sonoran Desert propolis: an antiproliferative propolis from a semi-arid region. Sci Nat 106, 25 (2019). https://doi.org/10.1007/s00114-019-1620-2

Download citation

Keywords

  • Sonoran Desert propolis
  • Polyphenolic profile
  • Populus fremontii S. Watson
  • Ambrosia ambrosioides (Cav.) Payne
  • Antiproliferative activity