Abstract
Orb-web spiders typically construct their webs with a vertical asymmetry: the hub, or meeting point of the radial threads, is often above the geometric center of the web. Previous explanations for this asymmetry involve differences in up/down running speed and mass, but fail to account adequately for ontogenetic changes in vertical asymmetry. The current article argues that the hub location is determined so as to maximize the expected number of prey and is updated, partially, in response to predation experience. A Bayesian model of spider learning from predation experience is presented and shown to be alone a better fit than spider mass to an existing empirical dataset. Combining this Bayesian model with the extant results on spider mass and differential running speeds ought to provide more thorough explanations for observed web asymmetry. The results of this theory-driven work positions orb-web spiders as a potentially ideal study family for animal Bayesian learning: predation experience is manifest in the spider’s orb-web geometry, which is updated frequently, and is readily quantifiable. Spider orb webs ought to facilitate further theoretical and empirical work in animal cognition and learning.
Similar content being viewed by others
References
Anotaux M, Marchal J, Châline N, Desquilbet L, Leborgne R, Gilbert C, Pasquet A (2012) Ageing alters spider orb-web construction. Animal Behav 84(5):1113–1121
Anotaux M, Toscani C, Leborgne R, Châline N, Pasquet A (2014) Aging and foraging efficiency in an orb-web spider. J Ethol 32(3):155–163
Biernaskie JM, Walker SC, Gegear RJ (2009) Bumblebees learn to forage like Bayesians. Am Nat 174 (3):413–423
Coslovsky M (2007) Asymmetry in spider webs: an adaptation to prey capture or to web building? Master’s thesis
Coslovsky M, Zschokke S (2009) Asymmetry in orb-webs: an adaptation to web building costs? J Insect Behav 22(1):29–38
Cranford SW, Tarakanova A, Pugno NM, Buehler MJ (2012) Nonlinear material behaviour of spider silk yields robust webs. Nature 482(7383):72
Dukas R (2008) Evolutionary biology of insect learning. Ann Rev Entomol, 53
Dukas R (2018) Cognition and learning. In: Córdoba-Aguilar, A, González-Tokman, D, González-Santoyo, I (eds) Insect behavior: from mechanisms to ecological and evolutionary consequences, chapter, 17
Eberhard WG (2014) A new view of orb webs: multiple trap designs in a single structure. Biol J Linnean Soc 111(2):437–449
Gotts N, Vollrath F (1991) Artificial intelligence modelling of web-building in the garden cross spider. J Theor Biol 152(4):485–511
Gregorič M, Kiesbüy HC, Lebrón SGQ, Rozman A, Agnarsson I, Kuntner M (2013) Optimal foraging, not biogenetic law, predicts spider orb web allometry. Naturwissenschaften 100(3):263– 268
Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (araneae, orbiculariae: Deinopoidea, araneoidea). Zool J Linn Soc 123(1):1–99
Harmer AM, Herberstein M (2009) Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (araneidae: Telaprocera maudae)? Anim Behav 78(2):499–504
Heiling A, Herberstein M (1999) The role of experience in web-building spiders (araneidae). Anim Cogn 2 (3):171–177
Heiling A, Herberstein M (2000) Interpretations of orb-web variability: a review of past and current ideas. Ekologia(Bratislava)/Ecology(Bratislava) 19:97–106
Herberstein M, Heiling A (1999) Asymmetry in spider orb webs: a result of physical constraints? Animal Behav 58(6):1241–1246
Herberstein ME, Tso I-M et al (2011) Spider webs: evolution, diversity and plasticity
Hesselberg T (2010) Ontogenetic changes in web design in two orb-web spiders. Ethology 116(6):535–545
Hesselberg T (2015) Exploration behaviour and behavioural flexibility in orb-web spiders: a review. Curr Zool 61(2):313–327
Hunte W, Myers R, Doyle R (1985) Bayesian mating decisions in an amphipod, gammarus lawrencianus bousfield. Anim Behav 33(2):366–372
Jakob E, Skow CD, Long SM (2011) Plasticity learning and cognition. Spider Behavior: Flexibility and Versatility
Japyassú HF, Laland KN (2017) Extended spider cognition. Anim Cogn 20(3):375–395
Krink T, Vollrath F (1997) Analysing spider web-building behaviour with rule-based simulations and genetic algorithms. J Theoret Biol 185(3):321–331
Krink T, Vollrath F (1998) Emergent properties in the behaviour of a virtual spider robot. Proc R Soc London B: Biol Sci 265(1410):2051–2055
Kuntner M, Gregorič M, Li D (2010) Mass predicts web asymmetry in nephila spiders. Naturwissenschaften 97(12):1097–1105
Kuntner M, Haddad CR, Aljančič G, Blejec A (2008) Ecology and web allometry of clitaetra irenae, an arboricolous African orb-weaving spider (araneae, araneoidea, nephilidae). J Arachnol 36(3):583–594
Kuntner M, Kralj-Fišer S, Gregorič M (2010) Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in nephilidae. Biol J Linnean Soc 99(4):849–866
Kuntner M, Bond JE, Gregorič M, Lokovšek T, Cheng R-C, Lupše N, Coddington JA, Agnarsson I, Hamilton CA, Lemmon EM, Lemmon AR (2018) Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism
LeGuelte L (1969) Learning in spiders. Am Zoologist 9(1):145–152
Maciejewski W (2010) An analysis of the orientation of an orb-web spider. J Theor Biol 265(4):604–608
Masters WM, Moffat AJ (1983) A functional explanation of top-bottom asymmetry in vertical orbwebs. Anim Behav 31(4):1043–1046
McNamara J, Houston A (1980) The application of statistical decision theory to animal behaviour. J Theor Biol 85(4):673–690
McNamara JM, Green RF, Olsson O (2006) Bayes’ theorem and its applications in animal behaviour. Oikos 112(2):243–251
Moya-Laraño J, Vinković D, Allard C, Foellmer M (2007) Mass-mediated sex differences in climbing patterns support the gravity hypothesis of sexual size dimorphism. Web Ecol 7(1):106–112
Nakata K (2012) Plasticity in an extended phenotype and reversed up-down asymmetry of spider orb webs. Anim Behav 83(3):821–826
Nakata K (2013) Spatial learning affects thread tension control in orb-web spiders. Biol Lett 9(4):20130052
Nakata K, Zschokke S (2010) Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in cyclosa. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100729
Nentwig W (1985) Top-bottom asymmetry in vertical orbwebs: a functional explanation and attendant complications. Oecologia 67(1):111–112
Nogueira S, Ades C (2012) Evidence of learning in the web construction of the spider argiope argentata (araneae: Araneidae). Rev Etol 11(1):23–36
Nonacs P, Soriano JL (1998) Patch sampling behaviour and future foraging expectations in argentine ants, linepithema humile. Anim Behav 55(3):519–527
Oaten A (1977) Optimal foraging in patches: a case for stochasticity. Theor Popul Biol 12(3):263–285
Pasquet A, Marchal J, Anotaux M, Leborgne R (2013) Imperfections in perfect architecture: the orb web of spiders. Europ J Entomol 110(3):493
Pierre J, Green RF (2008) A Bayesian approach to optimal foraging in parasitoids. In: Behavioral ecology of insect parasitoids, chapter 16. Wiley-Blackwell, pp 357–383
Rhisiart Aa, Vollrath F (1994) Design features of the orb web of the spider, araneus diadematus. Behav Ecol 5(3):280–287
Robinson MH, Robinson B (1972) The structure, possible function and origin of the remarkable ladder-web built by a new Guinea orb-web spider (araneae: Araneidae). J Nat Hist 6(6):687–694
Rodríguez SR (2000) Memory of captured prey in three web spiders (araneae: Araneidae, linyphiidae, tetragnathidae). Anim Cogn 3:91–97
Schneider JM, Vollrath F (1998) The effect of prey type on the geometry of the capture web of araneus diadematus. Sci Nat 85(8):391–394
Su I, Qin Z, Saraceno T, Krell A, Mühlethaler R, Bisshop A, Buehler MJ (2018) Imaging and analysis of a three-dimensional spider web architecture. J R Soc Interface 15(146):20180193
Tarakanova A, Buehler MJ (2012) The role of capture spiral silk properties in the diversification of orb webs. J R Soc Interface 9(77):3240–3248
Tew N, Hesselberg T (2018) Web asymmetry in the tetragnathid orb spider metellina mengei (blackwell, 1869) is determined by web inclination and web size. J Arachnol 46(2):370–372
Valletta JJ, Torney C, Kings M, Thornton A, Madden J (2017) Applications of machine learning in animal behaviour studies. Anim Behav 124:203–220
Valone T (2006) Are animals capable of Bayesian updating? An empirical review. Oikos 112(2):252–259
Venner S, Pasquet A, Leborgne R (2000) Web-building behaviour in the orb-weaving spider zygiella x-notata: influence of experience. Anim Behav 59(3):603–611
Vollrath F (1987) Altered geometry of webs in spiders with regenerated legs. Nature 328(6127):247
Vollrath F (1988) Untangling the spider’s web. Trends Ecol Evol 3(12):331–335
Vollrath F, Houston A (1986) Previous experience and site tenacity in the orb spider nephila (araneae, araneidae). Oecologia 70(2):305–308
Vollrath F, Downes M, Krackow S (1997) Design variability in web geometry of an orb-weaving spider. Physiol Behav 62(4):735–743
WSC (2019) World spider catalogue, https://wsc.nmbe.ch/
Zschokke S (2002) Form and function of the orb-web. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 99–106
Zschokke S (2011) Spiral and web asymmetry in the orb webs of araneus diadematus (araneae: Araneidae). J Arachnol 39(2):358–362
Zschokke S, Nakata K (2010) Spider orientation and hub position in orb webs. Naturwissenschaften 97 (1):43
Zschokke S, Nakata K (2015) Vertical asymmetries in orb webs. Biol J Linnean Soc 114(3):659–672
Zschokke S, Vollrath F (1995) Web construction patterns in a range of orb-weaving spiders (araneae). Europ J Entomol 92(3):523–541
Zschokke S, Hénaut Y, Benjamin SP, García-Ballinas J (2006) A Prey-capture strategies in sympatric web-building spiders. Canad J Zool 84(7):964–973
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Lars Koerner
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Maciejewski, W. Orb-web spiders as Bayesian learners. Sci Nat 106, 22 (2019). https://doi.org/10.1007/s00114-019-1615-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00114-019-1615-z