Skip to main content
Log in

Orb-web spiders as Bayesian learners

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Orb-web spiders typically construct their webs with a vertical asymmetry: the hub, or meeting point of the radial threads, is often above the geometric center of the web. Previous explanations for this asymmetry involve differences in up/down running speed and mass, but fail to account adequately for ontogenetic changes in vertical asymmetry. The current article argues that the hub location is determined so as to maximize the expected number of prey and is updated, partially, in response to predation experience. A Bayesian model of spider learning from predation experience is presented and shown to be alone a better fit than spider mass to an existing empirical dataset. Combining this Bayesian model with the extant results on spider mass and differential running speeds ought to provide more thorough explanations for observed web asymmetry. The results of this theory-driven work positions orb-web spiders as a potentially ideal study family for animal Bayesian learning: predation experience is manifest in the spider’s orb-web geometry, which is updated frequently, and is readily quantifiable. Spider orb webs ought to facilitate further theoretical and empirical work in animal cognition and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anotaux M, Marchal J, Châline N, Desquilbet L, Leborgne R, Gilbert C, Pasquet A (2012) Ageing alters spider orb-web construction. Animal Behav 84(5):1113–1121

    Article  Google Scholar 

  • Anotaux M, Toscani C, Leborgne R, Châline N, Pasquet A (2014) Aging and foraging efficiency in an orb-web spider. J Ethol 32(3):155–163

    Article  Google Scholar 

  • Biernaskie JM, Walker SC, Gegear RJ (2009) Bumblebees learn to forage like Bayesians. Am Nat 174 (3):413–423

    Article  Google Scholar 

  • Coslovsky M (2007) Asymmetry in spider webs: an adaptation to prey capture or to web building? Master’s thesis

  • Coslovsky M, Zschokke S (2009) Asymmetry in orb-webs: an adaptation to web building costs? J Insect Behav 22(1):29–38

    Article  Google Scholar 

  • Cranford SW, Tarakanova A, Pugno NM, Buehler MJ (2012) Nonlinear material behaviour of spider silk yields robust webs. Nature 482(7383):72

    Article  CAS  Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Ann Rev Entomol, 53

  • Dukas R (2018) Cognition and learning. In: Córdoba-Aguilar, A, González-Tokman, D, González-Santoyo, I (eds) Insect behavior: from mechanisms to ecological and evolutionary consequences, chapter, 17

  • Eberhard WG (2014) A new view of orb webs: multiple trap designs in a single structure. Biol J Linnean Soc 111(2):437–449

    Article  Google Scholar 

  • Gotts N, Vollrath F (1991) Artificial intelligence modelling of web-building in the garden cross spider. J Theor Biol 152(4):485–511

    Article  Google Scholar 

  • Gregorič M, Kiesbüy HC, Lebrón SGQ, Rozman A, Agnarsson I, Kuntner M (2013) Optimal foraging, not biogenetic law, predicts spider orb web allometry. Naturwissenschaften 100(3):263– 268

    Article  Google Scholar 

  • Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (araneae, orbiculariae: Deinopoidea, araneoidea). Zool J Linn Soc 123(1):1–99

    Article  Google Scholar 

  • Harmer AM, Herberstein M (2009) Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (araneidae: Telaprocera maudae)? Anim Behav 78(2):499–504

    Article  Google Scholar 

  • Heiling A, Herberstein M (1999) The role of experience in web-building spiders (araneidae). Anim Cogn 2 (3):171–177

    Article  Google Scholar 

  • Heiling A, Herberstein M (2000) Interpretations of orb-web variability: a review of past and current ideas. Ekologia(Bratislava)/Ecology(Bratislava) 19:97–106

    Google Scholar 

  • Herberstein M, Heiling A (1999) Asymmetry in spider orb webs: a result of physical constraints? Animal Behav 58(6):1241–1246

    Article  CAS  Google Scholar 

  • Herberstein ME, Tso I-M et al (2011) Spider webs: evolution, diversity and plasticity

  • Hesselberg T (2010) Ontogenetic changes in web design in two orb-web spiders. Ethology 116(6):535–545

    Article  Google Scholar 

  • Hesselberg T (2015) Exploration behaviour and behavioural flexibility in orb-web spiders: a review. Curr Zool 61(2):313–327

    Article  Google Scholar 

  • Hunte W, Myers R, Doyle R (1985) Bayesian mating decisions in an amphipod, gammarus lawrencianus bousfield. Anim Behav 33(2):366–372

    Article  Google Scholar 

  • Jakob E, Skow CD, Long SM (2011) Plasticity learning and cognition. Spider Behavior: Flexibility and Versatility

  • Japyassú HF, Laland KN (2017) Extended spider cognition. Anim Cogn 20(3):375–395

    Article  Google Scholar 

  • Krink T, Vollrath F (1997) Analysing spider web-building behaviour with rule-based simulations and genetic algorithms. J Theoret Biol 185(3):321–331

    Article  Google Scholar 

  • Krink T, Vollrath F (1998) Emergent properties in the behaviour of a virtual spider robot. Proc R Soc London B: Biol Sci 265(1410):2051–2055

    Article  Google Scholar 

  • Kuntner M, Gregorič M, Li D (2010) Mass predicts web asymmetry in nephila spiders. Naturwissenschaften 97(12):1097–1105

    Article  CAS  Google Scholar 

  • Kuntner M, Haddad CR, Aljančič G, Blejec A (2008) Ecology and web allometry of clitaetra irenae, an arboricolous African orb-weaving spider (araneae, araneoidea, nephilidae). J Arachnol 36(3):583–594

    Article  Google Scholar 

  • Kuntner M, Kralj-Fišer S, Gregorič M (2010) Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in nephilidae. Biol J Linnean Soc 99(4):849–866

    Article  Google Scholar 

  • Kuntner M, Bond JE, Gregorič M, Lokovšek T, Cheng R-C, Lupše N, Coddington JA, Agnarsson I, Hamilton CA, Lemmon EM, Lemmon AR (2018) Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism

  • LeGuelte L (1969) Learning in spiders. Am Zoologist 9(1):145–152

    Article  CAS  Google Scholar 

  • Maciejewski W (2010) An analysis of the orientation of an orb-web spider. J Theor Biol 265(4):604–608

    Article  Google Scholar 

  • Masters WM, Moffat AJ (1983) A functional explanation of top-bottom asymmetry in vertical orbwebs. Anim Behav 31(4):1043–1046

    Article  Google Scholar 

  • McNamara J, Houston A (1980) The application of statistical decision theory to animal behaviour. J Theor Biol 85(4):673–690

    Article  CAS  Google Scholar 

  • McNamara JM, Green RF, Olsson O (2006) Bayes’ theorem and its applications in animal behaviour. Oikos 112(2):243–251

    Article  Google Scholar 

  • Moya-Laraño J, Vinković D, Allard C, Foellmer M (2007) Mass-mediated sex differences in climbing patterns support the gravity hypothesis of sexual size dimorphism. Web Ecol 7(1):106–112

    Article  Google Scholar 

  • Nakata K (2012) Plasticity in an extended phenotype and reversed up-down asymmetry of spider orb webs. Anim Behav 83(3):821–826

    Article  Google Scholar 

  • Nakata K (2013) Spatial learning affects thread tension control in orb-web spiders. Biol Lett 9(4):20130052

    Article  Google Scholar 

  • Nakata K, Zschokke S (2010) Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in cyclosa. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100729

  • Nentwig W (1985) Top-bottom asymmetry in vertical orbwebs: a functional explanation and attendant complications. Oecologia 67(1):111–112

    Article  Google Scholar 

  • Nogueira S, Ades C (2012) Evidence of learning in the web construction of the spider argiope argentata (araneae: Araneidae). Rev Etol 11(1):23–36

    Google Scholar 

  • Nonacs P, Soriano JL (1998) Patch sampling behaviour and future foraging expectations in argentine ants, linepithema humile. Anim Behav 55(3):519–527

    Article  CAS  Google Scholar 

  • Oaten A (1977) Optimal foraging in patches: a case for stochasticity. Theor Popul Biol 12(3):263–285

    Article  CAS  Google Scholar 

  • Pasquet A, Marchal J, Anotaux M, Leborgne R (2013) Imperfections in perfect architecture: the orb web of spiders. Europ J Entomol 110(3):493

    Article  Google Scholar 

  • Pierre J, Green RF (2008) A Bayesian approach to optimal foraging in parasitoids. In: Behavioral ecology of insect parasitoids, chapter 16. Wiley-Blackwell, pp 357–383

  • Rhisiart Aa, Vollrath F (1994) Design features of the orb web of the spider, araneus diadematus. Behav Ecol 5(3):280–287

    Article  Google Scholar 

  • Robinson MH, Robinson B (1972) The structure, possible function and origin of the remarkable ladder-web built by a new Guinea orb-web spider (araneae: Araneidae). J Nat Hist 6(6):687–694

    Article  Google Scholar 

  • Rodríguez SR (2000) Memory of captured prey in three web spiders (araneae: Araneidae, linyphiidae, tetragnathidae). Anim Cogn 3:91–97

    Article  Google Scholar 

  • Schneider JM, Vollrath F (1998) The effect of prey type on the geometry of the capture web of araneus diadematus. Sci Nat 85(8):391–394

    Article  CAS  Google Scholar 

  • Su I, Qin Z, Saraceno T, Krell A, Mühlethaler R, Bisshop A, Buehler MJ (2018) Imaging and analysis of a three-dimensional spider web architecture. J R Soc Interface 15(146):20180193

    Article  Google Scholar 

  • Tarakanova A, Buehler MJ (2012) The role of capture spiral silk properties in the diversification of orb webs. J R Soc Interface 9(77):3240–3248

    Article  Google Scholar 

  • Tew N, Hesselberg T (2018) Web asymmetry in the tetragnathid orb spider metellina mengei (blackwell, 1869) is determined by web inclination and web size. J Arachnol 46(2):370–372

    Article  Google Scholar 

  • Valletta JJ, Torney C, Kings M, Thornton A, Madden J (2017) Applications of machine learning in animal behaviour studies. Anim Behav 124:203–220

    Article  Google Scholar 

  • Valone T (2006) Are animals capable of Bayesian updating? An empirical review. Oikos 112(2):252–259

    Article  Google Scholar 

  • Venner S, Pasquet A, Leborgne R (2000) Web-building behaviour in the orb-weaving spider zygiella x-notata: influence of experience. Anim Behav 59(3):603–611

    Article  CAS  Google Scholar 

  • Vollrath F (1987) Altered geometry of webs in spiders with regenerated legs. Nature 328(6127):247

    Article  Google Scholar 

  • Vollrath F (1988) Untangling the spider’s web. Trends Ecol Evol 3(12):331–335

    Article  CAS  Google Scholar 

  • Vollrath F, Houston A (1986) Previous experience and site tenacity in the orb spider nephila (araneae, araneidae). Oecologia 70(2):305–308

    Article  CAS  Google Scholar 

  • Vollrath F, Downes M, Krackow S (1997) Design variability in web geometry of an orb-weaving spider. Physiol Behav 62(4):735–743

    Article  CAS  Google Scholar 

  • WSC (2019) World spider catalogue, https://wsc.nmbe.ch/

  • Zschokke S (2002) Form and function of the orb-web. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 99–106

  • Zschokke S (2011) Spiral and web asymmetry in the orb webs of araneus diadematus (araneae: Araneidae). J Arachnol 39(2):358–362

    Article  Google Scholar 

  • Zschokke S, Nakata K (2010) Spider orientation and hub position in orb webs. Naturwissenschaften 97 (1):43

    Article  CAS  Google Scholar 

  • Zschokke S, Nakata K (2015) Vertical asymmetries in orb webs. Biol J Linnean Soc 114(3):659–672

    Article  Google Scholar 

  • Zschokke S, Vollrath F (1995) Web construction patterns in a range of orb-weaving spiders (araneae). Europ J Entomol 92(3):523–541

    Google Scholar 

  • Zschokke S, Hénaut Y, Benjamin SP, García-Ballinas J (2006) A Prey-capture strategies in sympatric web-building spiders. Canad J Zool 84(7):964–973

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wes Maciejewski.

Additional information

Communicated by: Lars Koerner

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciejewski, W. Orb-web spiders as Bayesian learners. Sci Nat 106, 22 (2019). https://doi.org/10.1007/s00114-019-1615-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-019-1615-z

Keywords

Navigation