Orb-web spiders as Bayesian learners

Abstract

Orb-web spiders typically construct their webs with a vertical asymmetry: the hub, or meeting point of the radial threads, is often above the geometric center of the web. Previous explanations for this asymmetry involve differences in up/down running speed and mass, but fail to account adequately for ontogenetic changes in vertical asymmetry. The current article argues that the hub location is determined so as to maximize the expected number of prey and is updated, partially, in response to predation experience. A Bayesian model of spider learning from predation experience is presented and shown to be alone a better fit than spider mass to an existing empirical dataset. Combining this Bayesian model with the extant results on spider mass and differential running speeds ought to provide more thorough explanations for observed web asymmetry. The results of this theory-driven work positions orb-web spiders as a potentially ideal study family for animal Bayesian learning: predation experience is manifest in the spider’s orb-web geometry, which is updated frequently, and is readily quantifiable. Spider orb webs ought to facilitate further theoretical and empirical work in animal cognition and learning.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Anotaux M, Marchal J, Châline N, Desquilbet L, Leborgne R, Gilbert C, Pasquet A (2012) Ageing alters spider orb-web construction. Animal Behav 84(5):1113–1121

    Article  Google Scholar 

  2. Anotaux M, Toscani C, Leborgne R, Châline N, Pasquet A (2014) Aging and foraging efficiency in an orb-web spider. J Ethol 32(3):155–163

    Article  Google Scholar 

  3. Biernaskie JM, Walker SC, Gegear RJ (2009) Bumblebees learn to forage like Bayesians. Am Nat 174 (3):413–423

    Article  Google Scholar 

  4. Coslovsky M (2007) Asymmetry in spider webs: an adaptation to prey capture or to web building? Master’s thesis

  5. Coslovsky M, Zschokke S (2009) Asymmetry in orb-webs: an adaptation to web building costs? J Insect Behav 22(1):29–38

    Article  Google Scholar 

  6. Cranford SW, Tarakanova A, Pugno NM, Buehler MJ (2012) Nonlinear material behaviour of spider silk yields robust webs. Nature 482(7383):72

    CAS  Article  Google Scholar 

  7. Dukas R (2008) Evolutionary biology of insect learning. Ann Rev Entomol, 53

  8. Dukas R (2018) Cognition and learning. In: Córdoba-Aguilar, A, González-Tokman, D, González-Santoyo, I (eds) Insect behavior: from mechanisms to ecological and evolutionary consequences, chapter, 17

  9. Eberhard WG (2014) A new view of orb webs: multiple trap designs in a single structure. Biol J Linnean Soc 111(2):437–449

    Article  Google Scholar 

  10. Gotts N, Vollrath F (1991) Artificial intelligence modelling of web-building in the garden cross spider. J Theor Biol 152(4):485–511

    Article  Google Scholar 

  11. Gregorič M, Kiesbüy HC, Lebrón SGQ, Rozman A, Agnarsson I, Kuntner M (2013) Optimal foraging, not biogenetic law, predicts spider orb web allometry. Naturwissenschaften 100(3):263– 268

    Article  Google Scholar 

  12. Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (araneae, orbiculariae: Deinopoidea, araneoidea). Zool J Linn Soc 123(1):1–99

    Article  Google Scholar 

  13. Harmer AM, Herberstein M (2009) Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (araneidae: Telaprocera maudae)? Anim Behav 78(2):499–504

    Article  Google Scholar 

  14. Heiling A, Herberstein M (1999) The role of experience in web-building spiders (araneidae). Anim Cogn 2 (3):171–177

    Article  Google Scholar 

  15. Heiling A, Herberstein M (2000) Interpretations of orb-web variability: a review of past and current ideas. Ekologia(Bratislava)/Ecology(Bratislava) 19:97–106

    Google Scholar 

  16. Herberstein M, Heiling A (1999) Asymmetry in spider orb webs: a result of physical constraints? Animal Behav 58(6):1241–1246

    CAS  Article  Google Scholar 

  17. Herberstein ME, Tso I-M et al (2011) Spider webs: evolution, diversity and plasticity

  18. Hesselberg T (2010) Ontogenetic changes in web design in two orb-web spiders. Ethology 116(6):535–545

    Article  Google Scholar 

  19. Hesselberg T (2015) Exploration behaviour and behavioural flexibility in orb-web spiders: a review. Curr Zool 61(2):313–327

    Article  Google Scholar 

  20. Hunte W, Myers R, Doyle R (1985) Bayesian mating decisions in an amphipod, gammarus lawrencianus bousfield. Anim Behav 33(2):366–372

    Article  Google Scholar 

  21. Jakob E, Skow CD, Long SM (2011) Plasticity learning and cognition. Spider Behavior: Flexibility and Versatility

  22. Japyassú HF, Laland KN (2017) Extended spider cognition. Anim Cogn 20(3):375–395

    Article  Google Scholar 

  23. Krink T, Vollrath F (1997) Analysing spider web-building behaviour with rule-based simulations and genetic algorithms. J Theoret Biol 185(3):321–331

    Article  Google Scholar 

  24. Krink T, Vollrath F (1998) Emergent properties in the behaviour of a virtual spider robot. Proc R Soc London B: Biol Sci 265(1410):2051–2055

    Article  Google Scholar 

  25. Kuntner M, Gregorič M, Li D (2010) Mass predicts web asymmetry in nephila spiders. Naturwissenschaften 97(12):1097–1105

    CAS  Article  Google Scholar 

  26. Kuntner M, Haddad CR, Aljančič G, Blejec A (2008) Ecology and web allometry of clitaetra irenae, an arboricolous African orb-weaving spider (araneae, araneoidea, nephilidae). J Arachnol 36(3):583–594

    Article  Google Scholar 

  27. Kuntner M, Kralj-Fišer S, Gregorič M (2010) Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in nephilidae. Biol J Linnean Soc 99(4):849–866

    Article  Google Scholar 

  28. Kuntner M, Bond JE, Gregorič M, Lokovšek T, Cheng R-C, Lupše N, Coddington JA, Agnarsson I, Hamilton CA, Lemmon EM, Lemmon AR (2018) Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism

  29. LeGuelte L (1969) Learning in spiders. Am Zoologist 9(1):145–152

    CAS  Article  Google Scholar 

  30. Maciejewski W (2010) An analysis of the orientation of an orb-web spider. J Theor Biol 265(4):604–608

    Article  Google Scholar 

  31. Masters WM, Moffat AJ (1983) A functional explanation of top-bottom asymmetry in vertical orbwebs. Anim Behav 31(4):1043–1046

    Article  Google Scholar 

  32. McNamara J, Houston A (1980) The application of statistical decision theory to animal behaviour. J Theor Biol 85(4):673–690

    CAS  Article  Google Scholar 

  33. McNamara JM, Green RF, Olsson O (2006) Bayes’ theorem and its applications in animal behaviour. Oikos 112(2):243–251

    Article  Google Scholar 

  34. Moya-Laraño J, Vinković D, Allard C, Foellmer M (2007) Mass-mediated sex differences in climbing patterns support the gravity hypothesis of sexual size dimorphism. Web Ecol 7(1):106–112

    Article  Google Scholar 

  35. Nakata K (2012) Plasticity in an extended phenotype and reversed up-down asymmetry of spider orb webs. Anim Behav 83(3):821–826

    Article  Google Scholar 

  36. Nakata K (2013) Spatial learning affects thread tension control in orb-web spiders. Biol Lett 9(4):20130052

    Article  Google Scholar 

  37. Nakata K, Zschokke S (2010) Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in cyclosa. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100729

  38. Nentwig W (1985) Top-bottom asymmetry in vertical orbwebs: a functional explanation and attendant complications. Oecologia 67(1):111–112

    Article  Google Scholar 

  39. Nogueira S, Ades C (2012) Evidence of learning in the web construction of the spider argiope argentata (araneae: Araneidae). Rev Etol 11(1):23–36

    Google Scholar 

  40. Nonacs P, Soriano JL (1998) Patch sampling behaviour and future foraging expectations in argentine ants, linepithema humile. Anim Behav 55(3):519–527

    CAS  Article  Google Scholar 

  41. Oaten A (1977) Optimal foraging in patches: a case for stochasticity. Theor Popul Biol 12(3):263–285

    CAS  Article  Google Scholar 

  42. Pasquet A, Marchal J, Anotaux M, Leborgne R (2013) Imperfections in perfect architecture: the orb web of spiders. Europ J Entomol 110(3):493

    Article  Google Scholar 

  43. Pierre J, Green RF (2008) A Bayesian approach to optimal foraging in parasitoids. In: Behavioral ecology of insect parasitoids, chapter 16. Wiley-Blackwell, pp 357–383

  44. Rhisiart Aa, Vollrath F (1994) Design features of the orb web of the spider, araneus diadematus. Behav Ecol 5(3):280–287

    Article  Google Scholar 

  45. Robinson MH, Robinson B (1972) The structure, possible function and origin of the remarkable ladder-web built by a new Guinea orb-web spider (araneae: Araneidae). J Nat Hist 6(6):687–694

    Article  Google Scholar 

  46. Rodríguez SR (2000) Memory of captured prey in three web spiders (araneae: Araneidae, linyphiidae, tetragnathidae). Anim Cogn 3:91–97

    Article  Google Scholar 

  47. Schneider JM, Vollrath F (1998) The effect of prey type on the geometry of the capture web of araneus diadematus. Sci Nat 85(8):391–394

    CAS  Article  Google Scholar 

  48. Su I, Qin Z, Saraceno T, Krell A, Mühlethaler R, Bisshop A, Buehler MJ (2018) Imaging and analysis of a three-dimensional spider web architecture. J R Soc Interface 15(146):20180193

    Article  Google Scholar 

  49. Tarakanova A, Buehler MJ (2012) The role of capture spiral silk properties in the diversification of orb webs. J R Soc Interface 9(77):3240–3248

    Article  Google Scholar 

  50. Tew N, Hesselberg T (2018) Web asymmetry in the tetragnathid orb spider metellina mengei (blackwell, 1869) is determined by web inclination and web size. J Arachnol 46(2):370–372

    Article  Google Scholar 

  51. Valletta JJ, Torney C, Kings M, Thornton A, Madden J (2017) Applications of machine learning in animal behaviour studies. Anim Behav 124:203–220

    Article  Google Scholar 

  52. Valone T (2006) Are animals capable of Bayesian updating? An empirical review. Oikos 112(2):252–259

    Article  Google Scholar 

  53. Venner S, Pasquet A, Leborgne R (2000) Web-building behaviour in the orb-weaving spider zygiella x-notata: influence of experience. Anim Behav 59(3):603–611

    CAS  Article  Google Scholar 

  54. Vollrath F (1987) Altered geometry of webs in spiders with regenerated legs. Nature 328(6127):247

    Article  Google Scholar 

  55. Vollrath F (1988) Untangling the spider’s web. Trends Ecol Evol 3(12):331–335

    CAS  Article  Google Scholar 

  56. Vollrath F, Houston A (1986) Previous experience and site tenacity in the orb spider nephila (araneae, araneidae). Oecologia 70(2):305–308

    CAS  Article  Google Scholar 

  57. Vollrath F, Downes M, Krackow S (1997) Design variability in web geometry of an orb-weaving spider. Physiol Behav 62(4):735–743

    CAS  Article  Google Scholar 

  58. WSC (2019) World spider catalogue, https://wsc.nmbe.ch/

  59. Zschokke S (2002) Form and function of the orb-web. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 99–106

  60. Zschokke S (2011) Spiral and web asymmetry in the orb webs of araneus diadematus (araneae: Araneidae). J Arachnol 39(2):358–362

    Article  Google Scholar 

  61. Zschokke S, Nakata K (2010) Spider orientation and hub position in orb webs. Naturwissenschaften 97 (1):43

    CAS  Article  Google Scholar 

  62. Zschokke S, Nakata K (2015) Vertical asymmetries in orb webs. Biol J Linnean Soc 114(3):659–672

    Article  Google Scholar 

  63. Zschokke S, Vollrath F (1995) Web construction patterns in a range of orb-weaving spiders (araneae). Europ J Entomol 92(3):523–541

    Google Scholar 

  64. Zschokke S, Hénaut Y, Benjamin SP, García-Ballinas J (2006) A Prey-capture strategies in sympatric web-building spiders. Canad J Zool 84(7):964–973

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wes Maciejewski.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Lars Koerner

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maciejewski, W. Orb-web spiders as Bayesian learners. Sci Nat 106, 22 (2019). https://doi.org/10.1007/s00114-019-1615-z

Download citation

Keywords

  • Orb-web spiders
  • Bayesian learning
  • Spider web geometry
  • Animal cognition