The Science of Nature

, 106:22 | Cite as

Orb-web spiders as Bayesian learners

  • Wes MaciejewskiEmail author
Original Paper


Orb-web spiders typically construct their webs with a vertical asymmetry: the hub, or meeting point of the radial threads, is often above the geometric center of the web. Previous explanations for this asymmetry involve differences in up/down running speed and mass, but fail to account adequately for ontogenetic changes in vertical asymmetry. The current article argues that the hub location is determined so as to maximize the expected number of prey and is updated, partially, in response to predation experience. A Bayesian model of spider learning from predation experience is presented and shown to be alone a better fit than spider mass to an existing empirical dataset. Combining this Bayesian model with the extant results on spider mass and differential running speeds ought to provide more thorough explanations for observed web asymmetry. The results of this theory-driven work positions orb-web spiders as a potentially ideal study family for animal Bayesian learning: predation experience is manifest in the spider’s orb-web geometry, which is updated frequently, and is readily quantifiable. Spider orb webs ought to facilitate further theoretical and empirical work in animal cognition and learning.


Orb-web spiders Bayesian learning Spider web geometry Animal cognition 



  1. Anotaux M, Marchal J, Châline N, Desquilbet L, Leborgne R, Gilbert C, Pasquet A (2012) Ageing alters spider orb-web construction. Animal Behav 84(5):1113–1121CrossRefGoogle Scholar
  2. Anotaux M, Toscani C, Leborgne R, Châline N, Pasquet A (2014) Aging and foraging efficiency in an orb-web spider. J Ethol 32(3):155–163CrossRefGoogle Scholar
  3. Biernaskie JM, Walker SC, Gegear RJ (2009) Bumblebees learn to forage like Bayesians. Am Nat 174 (3):413–423CrossRefGoogle Scholar
  4. Coslovsky M (2007) Asymmetry in spider webs: an adaptation to prey capture or to web building? Master’s thesisGoogle Scholar
  5. Coslovsky M, Zschokke S (2009) Asymmetry in orb-webs: an adaptation to web building costs? J Insect Behav 22(1):29–38CrossRefGoogle Scholar
  6. Cranford SW, Tarakanova A, Pugno NM, Buehler MJ (2012) Nonlinear material behaviour of spider silk yields robust webs. Nature 482(7383):72CrossRefGoogle Scholar
  7. Dukas R (2008) Evolutionary biology of insect learning. Ann Rev Entomol, 53Google Scholar
  8. Dukas R (2018) Cognition and learning. In: Córdoba-Aguilar, A, González-Tokman, D, González-Santoyo, I (eds) Insect behavior: from mechanisms to ecological and evolutionary consequences, chapter, 17Google Scholar
  9. Eberhard WG (2014) A new view of orb webs: multiple trap designs in a single structure. Biol J Linnean Soc 111(2):437–449CrossRefGoogle Scholar
  10. Gotts N, Vollrath F (1991) Artificial intelligence modelling of web-building in the garden cross spider. J Theor Biol 152(4):485–511CrossRefGoogle Scholar
  11. Gregorič M, Kiesbüy HC, Lebrón SGQ, Rozman A, Agnarsson I, Kuntner M (2013) Optimal foraging, not biogenetic law, predicts spider orb web allometry. Naturwissenschaften 100(3):263– 268CrossRefGoogle Scholar
  12. Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (araneae, orbiculariae: Deinopoidea, araneoidea). Zool J Linn Soc 123(1):1–99CrossRefGoogle Scholar
  13. Harmer AM, Herberstein M (2009) Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (araneidae: Telaprocera maudae)? Anim Behav 78(2):499–504CrossRefGoogle Scholar
  14. Heiling A, Herberstein M (1999) The role of experience in web-building spiders (araneidae). Anim Cogn 2 (3):171–177CrossRefGoogle Scholar
  15. Heiling A, Herberstein M (2000) Interpretations of orb-web variability: a review of past and current ideas. Ekologia(Bratislava)/Ecology(Bratislava) 19:97–106Google Scholar
  16. Herberstein M, Heiling A (1999) Asymmetry in spider orb webs: a result of physical constraints? Animal Behav 58(6):1241–1246CrossRefGoogle Scholar
  17. Herberstein ME, Tso I-M et al (2011) Spider webs: evolution, diversity and plasticityGoogle Scholar
  18. Hesselberg T (2010) Ontogenetic changes in web design in two orb-web spiders. Ethology 116(6):535–545CrossRefGoogle Scholar
  19. Hesselberg T (2015) Exploration behaviour and behavioural flexibility in orb-web spiders: a review. Curr Zool 61(2):313–327CrossRefGoogle Scholar
  20. Hunte W, Myers R, Doyle R (1985) Bayesian mating decisions in an amphipod, gammarus lawrencianus bousfield. Anim Behav 33(2):366–372CrossRefGoogle Scholar
  21. Jakob E, Skow CD, Long SM (2011) Plasticity learning and cognition. Spider Behavior: Flexibility and VersatilityGoogle Scholar
  22. Japyassú HF, Laland KN (2017) Extended spider cognition. Anim Cogn 20(3):375–395CrossRefGoogle Scholar
  23. Krink T, Vollrath F (1997) Analysing spider web-building behaviour with rule-based simulations and genetic algorithms. J Theoret Biol 185(3):321–331CrossRefGoogle Scholar
  24. Krink T, Vollrath F (1998) Emergent properties in the behaviour of a virtual spider robot. Proc R Soc London B: Biol Sci 265(1410):2051–2055CrossRefGoogle Scholar
  25. Kuntner M, Gregorič M, Li D (2010) Mass predicts web asymmetry in nephila spiders. Naturwissenschaften 97(12):1097–1105CrossRefGoogle Scholar
  26. Kuntner M, Haddad CR, Aljančič G, Blejec A (2008) Ecology and web allometry of clitaetra irenae, an arboricolous African orb-weaving spider (araneae, araneoidea, nephilidae). J Arachnol 36(3):583–594CrossRefGoogle Scholar
  27. Kuntner M, Kralj-Fišer S, Gregorič M (2010) Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in nephilidae. Biol J Linnean Soc 99(4):849–866CrossRefGoogle Scholar
  28. Kuntner M, Bond JE, Gregorič M, Lokovšek T, Cheng R-C, Lupše N, Coddington JA, Agnarsson I, Hamilton CA, Lemmon EM, Lemmon AR (2018) Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphismGoogle Scholar
  29. LeGuelte L (1969) Learning in spiders. Am Zoologist 9(1):145–152CrossRefGoogle Scholar
  30. Maciejewski W (2010) An analysis of the orientation of an orb-web spider. J Theor Biol 265(4):604–608CrossRefGoogle Scholar
  31. Masters WM, Moffat AJ (1983) A functional explanation of top-bottom asymmetry in vertical orbwebs. Anim Behav 31(4):1043–1046CrossRefGoogle Scholar
  32. McNamara J, Houston A (1980) The application of statistical decision theory to animal behaviour. J Theor Biol 85(4):673–690CrossRefGoogle Scholar
  33. McNamara JM, Green RF, Olsson O (2006) Bayes’ theorem and its applications in animal behaviour. Oikos 112(2):243–251CrossRefGoogle Scholar
  34. Moya-Laraño J, Vinković D, Allard C, Foellmer M (2007) Mass-mediated sex differences in climbing patterns support the gravity hypothesis of sexual size dimorphism. Web Ecol 7(1):106–112CrossRefGoogle Scholar
  35. Nakata K (2012) Plasticity in an extended phenotype and reversed up-down asymmetry of spider orb webs. Anim Behav 83(3):821–826CrossRefGoogle Scholar
  36. Nakata K (2013) Spatial learning affects thread tension control in orb-web spiders. Biol Lett 9(4):20130052CrossRefGoogle Scholar
  37. Nakata K, Zschokke S (2010) Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in cyclosa. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100729Google Scholar
  38. Nentwig W (1985) Top-bottom asymmetry in vertical orbwebs: a functional explanation and attendant complications. Oecologia 67(1):111–112CrossRefGoogle Scholar
  39. Nogueira S, Ades C (2012) Evidence of learning in the web construction of the spider argiope argentata (araneae: Araneidae). Rev Etol 11(1):23–36Google Scholar
  40. Nonacs P, Soriano JL (1998) Patch sampling behaviour and future foraging expectations in argentine ants, linepithema humile. Anim Behav 55(3):519–527CrossRefGoogle Scholar
  41. Oaten A (1977) Optimal foraging in patches: a case for stochasticity. Theor Popul Biol 12(3):263–285CrossRefGoogle Scholar
  42. Pasquet A, Marchal J, Anotaux M, Leborgne R (2013) Imperfections in perfect architecture: the orb web of spiders. Europ J Entomol 110(3):493CrossRefGoogle Scholar
  43. Pierre J, Green RF (2008) A Bayesian approach to optimal foraging in parasitoids. In: Behavioral ecology of insect parasitoids, chapter 16. Wiley-Blackwell, pp 357–383Google Scholar
  44. Rhisiart Aa, Vollrath F (1994) Design features of the orb web of the spider, araneus diadematus. Behav Ecol 5(3):280–287CrossRefGoogle Scholar
  45. Robinson MH, Robinson B (1972) The structure, possible function and origin of the remarkable ladder-web built by a new Guinea orb-web spider (araneae: Araneidae). J Nat Hist 6(6):687–694CrossRefGoogle Scholar
  46. Rodríguez SR (2000) Memory of captured prey in three web spiders (araneae: Araneidae, linyphiidae, tetragnathidae). Anim Cogn 3:91–97CrossRefGoogle Scholar
  47. Schneider JM, Vollrath F (1998) The effect of prey type on the geometry of the capture web of araneus diadematus. Sci Nat 85(8):391–394CrossRefGoogle Scholar
  48. Su I, Qin Z, Saraceno T, Krell A, Mühlethaler R, Bisshop A, Buehler MJ (2018) Imaging and analysis of a three-dimensional spider web architecture. J R Soc Interface 15(146):20180193CrossRefGoogle Scholar
  49. Tarakanova A, Buehler MJ (2012) The role of capture spiral silk properties in the diversification of orb webs. J R Soc Interface 9(77):3240–3248CrossRefGoogle Scholar
  50. Tew N, Hesselberg T (2018) Web asymmetry in the tetragnathid orb spider metellina mengei (blackwell, 1869) is determined by web inclination and web size. J Arachnol 46(2):370–372CrossRefGoogle Scholar
  51. Valletta JJ, Torney C, Kings M, Thornton A, Madden J (2017) Applications of machine learning in animal behaviour studies. Anim Behav 124:203–220CrossRefGoogle Scholar
  52. Valone T (2006) Are animals capable of Bayesian updating? An empirical review. Oikos 112(2):252–259CrossRefGoogle Scholar
  53. Venner S, Pasquet A, Leborgne R (2000) Web-building behaviour in the orb-weaving spider zygiella x-notata: influence of experience. Anim Behav 59(3):603–611CrossRefGoogle Scholar
  54. Vollrath F (1987) Altered geometry of webs in spiders with regenerated legs. Nature 328(6127):247CrossRefGoogle Scholar
  55. Vollrath F (1988) Untangling the spider’s web. Trends Ecol Evol 3(12):331–335CrossRefGoogle Scholar
  56. Vollrath F, Houston A (1986) Previous experience and site tenacity in the orb spider nephila (araneae, araneidae). Oecologia 70(2):305–308CrossRefGoogle Scholar
  57. Vollrath F, Downes M, Krackow S (1997) Design variability in web geometry of an orb-weaving spider. Physiol Behav 62(4):735–743CrossRefGoogle Scholar
  58. WSC (2019) World spider catalogue,
  59. Zschokke S (2002) Form and function of the orb-web. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 99–106Google Scholar
  60. Zschokke S (2011) Spiral and web asymmetry in the orb webs of araneus diadematus (araneae: Araneidae). J Arachnol 39(2):358–362CrossRefGoogle Scholar
  61. Zschokke S, Nakata K (2010) Spider orientation and hub position in orb webs. Naturwissenschaften 97 (1):43CrossRefGoogle Scholar
  62. Zschokke S, Nakata K (2015) Vertical asymmetries in orb webs. Biol J Linnean Soc 114(3):659–672CrossRefGoogle Scholar
  63. Zschokke S, Vollrath F (1995) Web construction patterns in a range of orb-weaving spiders (araneae). Europ J Entomol 92(3):523–541Google Scholar
  64. Zschokke S, Hénaut Y, Benjamin SP, García-Ballinas J (2006) A Prey-capture strategies in sympatric web-building spiders. Canad J Zool 84(7):964–973CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.San Jose State UniversitySan JoseUSA

Personalised recommendations