In vitro biodegradation potential of airborne Aspergilli and Penicillia

Abstract

The study addresses in vitro degradation potential of airborne Aspergillus and Penicillium/Talarmyces species originating from cultural heritage conservation premises. A series of rapid, cost effective biodegradation assays were performed to assess production of extracellular pigments, acids, and enzymes. Most of the isolates have demonstrated positive growth in at least one of the preformed tests. Strongest overall degradation potential was demonstrated for Penicillium brevicompactum, P. glabrum, and Talaromyces sayulitensis while Aspergillus domesticus, A. penicillioides, A. pseudoglaucus, and A. ruber did not exhibit positive reaction in any of the employed assays. Majority of isolates exhibited proteolytic and cellulolytic activity while carbonate dissolution was observed for only five tested fungi. Highest alteration of pH value in liquid media was documented for T. sayulitensis while A. niger and P. expansum exhibited strongest acid production on CREA. Certain isolates, mostly Penicillium species, displayed production of extracellular pigments. The results imply that many of the tested fungi have significant biodegradation capacity, indicating their potential to inflict structural and esthetic alterations on cultural heritage objects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Albertano P, Urzì C (1999) Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microb Ecol 38(3):244–252

    CAS  PubMed  Article  Google Scholar 

  2. Anaya M, Borrego SF, Gámez E, Castro M, Molina A, Valdés O (2016) Viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba. Aerobiologia 32(3):513–527

    Article  Google Scholar 

  3. Arai H (2000) Foxing caused by fungi: twenty-five years of study. Int Biodeterior Biodegrad 46(3):181–188

    CAS  Article  Google Scholar 

  4. Barad S, Horowitz SB, Moscovitz O, Lichter A, Sherman A, Prusky D (2012) A Penicillium expansum glucose oxidase–encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit. Mol Plant Microbe In 25(6):779–788

    CAS  Article  Google Scholar 

  5. Bartman CD, Doerfler DL, Bird BA, Remaley AT, Peace JN, Campbell IM (1981) Mycophenolic acid production by Penicillium brevicompactum on solid media. Appl Environ Microbiol 41(3):729–736

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Borrego S, Perdomo I (2016) Airborne microorganisms cultivable on naturally ventilated document repositories of the National Archive of Cuba. Environ Sci Pollut Res 23:3747–3757

    Article  Google Scholar 

  7. Borrego S, Guiamet P, de Saravia SG, Batistini P, Garcia M, Lavin P, Perdomo I (2010) The quality of air at archives and the biodeterioration of photographs. Int Biodeterior Biodegrad 64(2):139–145

    CAS  Article  Google Scholar 

  8. Borrego S, Molina A, Santana A (2017) Fungi in archive repositories environments and the deterioration of the graphics documents. EC Microbiology 11(5):205–226

    Google Scholar 

  9. Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67(6):1127–1155

    CAS  Article  Google Scholar 

  10. Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24(1):36

    Article  CAS  Google Scholar 

  11. Florian MLE (2002) Fungal facts: solving fungal problems in heritage collections. Archetype Publications Ltd., London

    Google Scholar 

  12. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA, Robert A (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  13. Garg KL, Jain KK, Mishra AK (1995) Role of fungi in the deterioration of wall paintings. Sci Total Environ 167(1–3):255–271

    CAS  Article  Google Scholar 

  14. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gutarowska B (2010) Metabolic activity of moulds as a factor of building materials biodegradation. Pol J Microbiol 59(2):119–124

    CAS  PubMed  Google Scholar 

  16. Harkawy A, Górny RL, Ogierman L, Wlazlo A, Lawniczek-Walczyk A, Niesler A (2011) Bioaerosol assessment in naturally ventilated historical library building with restricted personnel access. Annal Agric Environ Med 18(2):323–329

    Google Scholar 

  17. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169

    PubMed  PubMed Central  Article  Google Scholar 

  18. Horton D (2012) Advances in carbohydrate chemistry and biochemistry, vol 68. Academic Press, Oxford, UK

    Google Scholar 

  19. Houbraken JA, Frisvad JC, Samson RA (2010) Taxonomy of Penicillium citrinum and related species. Fungal Divers 44(1):117–133

    Article  Google Scholar 

  20. Jo WS, Bae SH, Cho DH, Park SD, Yoo YB, Park SC (2009) Optimal medium conditions for the detection of cellulolytic activity in Ganoderma lucidum. Mycobiology 37(4):313–316

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Jones B, Pemberton SG (1987) The role of fungi in the diagenetic alteration of spar calcite. Can J Earth Sci 24(5):903–914

    CAS  Article  Google Scholar 

  22. Liang YL, Zhang Z, Wu M, Wu Y, Feng JX (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed Res Int 2014(512497):13

    Google Scholar 

  23. Lugauskas A, Krikŝtaponis A (2004) Microscopic fungi found in the libraries of Vilnius and factors affecting their development. Indoor Built Environ 13(3):169–182

    Article  Google Scholar 

  24. Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73(2):269–278

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Narasimha G, Reddi Pradeep M, Sridevi A (2016) Chemical pretreatment of agricultural feedstock for enhanced production of cellulase by mutant fungus, Aspergillus niger. J Appl Biotechnol Bioeng 1(1):00004

    Google Scholar 

  26. Nittérus M (2000) Fungi in archives and libraries. Restaurator 21(1):25–40

    Google Scholar 

  27. Nunes I, Mesquita N, Verde SC, Bandeira AML, Carolino MM, Portugal A, Botelho ML (2013) Characterization of an airborne microbial community: a case study in the archive of the University of Coimbra. Portugal Int Biodeterior Biodegrad 79:36–41

    CAS  Article  Google Scholar 

  28. Nyuksha JUP (1994) The biodeterioration of paper and books. In: Garg KL, Garg N, Mukerji KG (eds) Recent advances in bodeterioration and biodegradation. Naya Prokash, Calcutta, India, pp 1–88

    Google Scholar 

  29. Onsori H, Zamani MR, Motallebi M, Zarghami N (2005) Identification of over producer strain of endo-β-1,4-glucanase in Aspergillus species: characterization of crude carboxymethyl cellulase. Afr J Biotechnol 4(1):26–30

    CAS  Google Scholar 

  30. Ortega-Morales BO, Narváez-Zapata J, Reyes-Estebanez M, Quintana P, De la Rosa-García S, Bullen H, Gómez-Cornelio S, Chan-Bacab MJ (2016) Bioweathering potential of cultivable fungi associated with semiarid surface microhabitats of Mayan buildings. Front Microbiol 7:201

  31. Pangallo D, Chovanova K, Šimonovičová A, Ferianc P (2009) Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Can J Microbiol 55(3):277–287

    CAS  PubMed  Article  Google Scholar 

  32. Pangallo D, Kraková L, Chovanová K, Šimonovičová A, De Leo F, Urzì C (2012) Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodegradative assays. World J Microbiol Biotechnol 28(5):2015–2027

    CAS  PubMed  Article  Google Scholar 

  33. Pasqariello G, Valenti P, Maggi O, Persiani AM (2008) Paper. In: Caneva G, Nugari MP, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage: biodeterioration and conservation. Getty Conservation Institute, Los Angeles, pp 108–113

    Google Scholar 

  34. Pasquariello G, Maggi O, Persiani AM (2008) General processes of biodeterioration of materials of plant origin. In: Caneva G, Nugari MP, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage: biodeterioration and conservation. Getty Conservation Institute, Los Angeles, pp 99–100

    Google Scholar 

  35. Pinna D, Salvadori O (2008) Processes of biodeterioration: general mechanisms. In: Caneva G, Nugari MP, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage: biodeterioration and conservation. Getty Conservation Institute, Los Angeles, pp 15–34

    Google Scholar 

  36. Pinzari F, Cialei V, Barbabietola N (2010) Measurement of the fungal deteriorating potential in the dust of indoor environments. E-Preserv Sci J 7:29–34

    CAS  Google Scholar 

  37. Rojas TI, Aira MJ, Batista A, Cruz IL, González S (2012) Fungal biodeterioration in historic buildings of Havana (Cuba). Grana 51(1):44–51

    Article  Google Scholar 

  38. Samson RA, Hoekstra ES, Frisvad JC (2004) Introduction to food-and airborne fungi. Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands

    Google Scholar 

  39. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi, CBS laboratory manual series. CBS-Fungal Biodiversity Centre, Utrecht, The Netherlands, p 2

    Google Scholar 

  40. Saran S, Isar J, Saxena RK (2007) A modified method for the detection of microbial proteases on agar plates using tannic acid. J Biochem Biophys Methods 70(4):697–699

    CAS  PubMed  Article  Google Scholar 

  41. Savković Ž, Unković N, Stupar M, Franković M, Jovanović M, Erić S, Šarić K, Stanković S, Dimkić I, Vukojević J, Ljaljević Grbić M (2016) Diversity and biodeteriorative potential of fungal dwellers on ancient stone stela. Int Biodeterior Biodegrad 115:212–223

    Article  CAS  Google Scholar 

  42. Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. Adv Appl Microbiol 66:97–139

    CAS  PubMed  Article  Google Scholar 

  43. Shivani D, Kumar JS (2015) Extracellular enzymatic profile of fungal deteriogens of historical palace of Ujjain. Int J Curr Microbiol App Sci 4(5):122–132

    CAS  Google Scholar 

  44. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124

    CAS  Article  Google Scholar 

  45. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24(1–2):47–55

    Article  Google Scholar 

  46. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Unković N, Dimkić I, Stupar M, Stanković S, Vukojević J, Ljaljević Grbić M (2018) Biodegradative potential of fungal isolates from sacral ambient: In vitro study as risk assessment implication for the conservation of wall paintings. PLoS One 13(1):e0190922. https://doi.org/10.1371/journal.pone.0190922

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Viegas C, Pinheiro AC, Sabino R, Viegas S, Brandão J, Veríssimo C (2015) Environmental mycology in public health: fungi and mycotoxins risk assessment and management. Academic Press, Cambridge, Massachusetts, USA

  49. Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, Amend AS, Seifert KA, Samson RA (2014) Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol 78:63–139

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol R 65(4):497–522

    Article  Google Scholar 

  51. Wainwright M (1999) An introduction to environmental biotechnology. Springer, Boston, MA

    Book  Google Scholar 

  52. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46(4):343–368

    CAS  Article  Google Scholar 

  53. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  54. Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA (2014) Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78:175–341

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This research was carried out as a part of the project No.173032 financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Željko Savković.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Lukasz Stepien

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savković, Ž., Stupar, M., Unković, N. et al. In vitro biodegradation potential of airborne Aspergilli and Penicillia. Sci Nat 106, 8 (2019). https://doi.org/10.1007/s00114-019-1603-3

Download citation

Keywords

  • Acidic metabolites
  • Aspergillus
  • Biodegradation
  • Enzyme production
  • Extracellular pigments
  • Penicillium