A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra

Abstract

Terrestrial salamanders of the genus Salamandra represent one of the most prominent groups of amphibians. They are mainly distributed across Europe but also reach Northern Africa and the Near East. Members of the six currently accepted species have long been known to be poisonous; however, work on their toxins was mostly published in German language, and therefore, many nuances of these studies have remained hidden from the majority of herpetologists and toxinologists. Several Salamandra species are called fire salamanders due to their highly contrasted, black-yellow colouration which probably serves to deter predators, although thorough evidence for aposematism in Salamandra is still lacking. Salamandra skin toxins do not only represent a potent antipredator defence but may also have antimicrobial effects. A better understanding of this dual function of Salamandra skin secretions is of utmost importance in the face of the emergence of a fungal disease causing catastrophic declines of fire salamanders in Central Europe, caused by the fungus Batrachochytrium salamandrivorans. In this review, we summarize the knowledge on Salamandra toxins, providing a list of the compounds so far isolated from their secretion and focusing on the bioactivity of the major compounds in Salamandra secretions, the steroidal alkaloids. We identify priorities for future research, including a screening of co-occurrence of steroidal alkaloids and tetrodotoxins in salamandrids, chemical characterization of already identified novel steroidal compounds, elucidation of the presence and role of peptides and proteins in the secretion, and experimental in vitro and in vivo study of the interactions between bioactive compounds in Salamandra skin secretions and cutaneous fungal and bacterial pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Andreone F, Clima V, De Michelis S (1999) On the ecology of Salamandra lanzai Nascetti, Andreone, Capula & Bullini, 1988. Number and movement of individuals, and influence of climate on activity in a population of the upper Po valley (Caudata: Salamandridae). Herpetozoa 12:3–10

    Google Scholar 

  2. Anonymous (1529) Gart der Gesundheit, zu Latin ortus sanitatis. Von allerley Thieren Vögeln/Vischen oder Mözwundern und Edlem gestein/daruß gezogen von den natürlichen Meistern/was dem menschen zu seiner Gesundheit dienet/mit höchstem flesß durch sücht/korrigiert/und gebessert. Strassburg

  3. Balogová M, Uhrin M (2015) Sex-biased dorsal spot patterns in the fire salamander (Salamandra salamandra). Salamandra 51:12–18

    Google Scholar 

  4. Balogová M, Kyselová M, Šafárik J, Uhrin M (2016) Changes in dorsal spot pattern in adult Salamandra salamandra (Linnaeus, 1758). Herpetozoa 28:167–171

    Google Scholar 

  5. Bane V, Lehane M, Dikshit M, O’Riordan A, Furey A (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins (Basel) 6:693–755

    CAS  Google Scholar 

  6. Bas S, Gasser F (1994) Polytypism of Salamandra salamandra (L.) in north-western Iberia. Mertensiella 4:41–74

    Google Scholar 

  7. Becher JJ (1663) Parnassus medicinalis illustratus oder: Ein neues und dergestalt vormatzul noch nie gesehenes Thier-Kräuter- und Berg-Buch samt der Salernischen Schul

  8. Becker H (1986) Inhaltsstoffe von Feuer- und Alpensalamander. Pharm Unserer Zeit 15(4):97–106

    CAS  PubMed  Google Scholar 

  9. Benn M, Shaw R (1974) A Salamander Alkaloid Synthesis. Can J Chem 52(16):2936–2940

    CAS  Google Scholar 

  10. Bettin C, Greven H (1986) Bacteria on the skin of Salamandra salamandra (L.) (Amphibia: Urodela) with notes on their possible significance. Zool Anz 216:267–270

    Google Scholar 

  11. Beukema W, Nicieza AG, Lourenco A, Velo-Anton G (2016a) Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J Zool Syst Evol Res 54:127–136. https://doi.org/10.1111/jzs.12119

    Article  Google Scholar 

  12. Beukema W, Speybroeck J, Velo-Anton G (2016b) Salamandra. Curr Biol 26:696–697

    Google Scholar 

  13. Bevins CL, Zasloff M (1990) Peptides from frog skin. Annu Rev Biochem 59:395–414

    CAS  PubMed  Google Scholar 

  14. Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KP, Harris RN (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett 16:807–820

    PubMed  Google Scholar 

  15. Bletz MC, Goedbloed DJ, Sanchez E, Reinhardt T, Tebbe CC, Bhuju S, Geffers R, Jarek M, Vences M, Steinfartz S (2016) Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun 7:13699. https://doi.org/10.1038/ncomms13699

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Bogaerts S (2002) Farbkleidentwicklung bei einigen Feuersalamandern. Amphibia 1:4–10

    Google Scholar 

  17. Böhme W (1979) Zum Höchstalter des Feuersalamanders “Salamandra salamandra” (L.), ein wiederentdecktes Dokument aus der Frühzeit der Terraristik (Amphibia: Caudata: Salamandridae). Salamandra 15:176–179

    Google Scholar 

  18. Böhme W, Hartmann T, Fleck J, Schöttler T (2013) Miscellaneous notes on Oriental Fire Salamanders (Salamandra infraimmaculata Martens, 1885) (Lissamphibia: Urodela: Salamandridae). Russ J Herpetol 20:66–72

    Google Scholar 

  19. Bonato L, Grossenbacher K (2000) On the distribution and chromatic differentiation of the alpine salamander Salamandra atra Laurenti, 1768, between Val Lagarina and Val Sugana (venetian Prealps): an updated review (Urodela: Salamandridae). Herpetozoa 13:171–180

    Google Scholar 

  20. Bonato L, Steinfartz S (2005) Evolution of the melanistic colour in the alpine salamander Salamandra atra as revealed by a new subspecies from the Venetian Prealps. Ital J Zool 72:253–260

    Google Scholar 

  21. Boulenger EG (1921) Experiments on colour-changes of the spotted salamanders (Salamandra maculosa), conducted in the society’s gardens. Proc Zool Soc Lond 91(1):99–102

    Google Scholar 

  22. Bradley SG, Klika LJ (1981) A fatal poisoning from the Oregon rough-skinned newt (Taricha graulosa). J Am Med Assoc 246:247

    CAS  Google Scholar 

  23. Brizzie R, Delfino G, Jantra S, Alvarez BB, Sever D (2001) The amphibian cutaneous glands: some aspects of their structure and adaptive role. In: Lymberakis P, Valakos E, Pafilis P, Mylonas M. Herpetologua Candiana, National Museum of Crete: Crete

    Google Scholar 

  24. Brodie ED, Smatresk NJ (1990) The antipredator arsenal of fire salamanders: spraying of secretions from highly pressurized dorsal skin glands. Herpetologica 46:1–7

    Google Scholar 

  25. Brown DD (1997) The role of thyroid hormone in zebrafish and axolotl development. Proc Natl Acad Sci U S A 94:13011–13016

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bucciarelli GM, Green DB, Shaffer HB, Kats LB (2016) Individual fluctuations in toxin levels affect breeding site fidelity in a chemically defended amphibian. Proc R Soc B Biol Sci 283(1831):20160468

    Google Scholar 

  27. Buckley D, Alcobendas M, Garcia-Paris M, Wake MH (2007) Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol Dev 9:105–115

    PubMed  Google Scholar 

  28. Cardoso MH, Cobacho NB, Cherobim MD, Pinto MFS, dos Santos C, Maximiano MR, de Barros EG, Dias SC, Franco OL (2014) Insights into the antimicrobial activities of unusual antimicrobial peptide families from amphibian skin. Clin Toxicol 4:205. https://doi.org/10.4172/2161-0495.1000205

    CAS  Article  Google Scholar 

  29. Carretero MA, Rosell C (1999) Salamandra salamandra (fire salamander). Predation. Herp Rev 30:161

    Google Scholar 

  30. Caspers BA, Steinfartz S (2011) Preference for the other sex: olfactory sex recognition in terrestrial fire salamanders (Salamandra salamandra). Amphibia-Reptilia 32:503–508

    Google Scholar 

  31. Caspers BA, Steinfartz S, Krause ET (2015) Larval deposition behaviour and maternal investment of females reflect differential habitat adaptation in a genetically diverging salamander population. Behav Ecol Sociobiol 69:407–413

    Google Scholar 

  32. Dalbeck L, Düssel-Siebert H, Kerres A, Kirst K, Koch A, Lötters S, Ohlhoff D, Sabino-Pinto J, Preißler K, Schulte U, Schulz V, Steinfartz S, Veith M, Vences M, Wagner N, Wegge J (2018) Die Salamanderpest und ihr Erreger Batrachochytrium salamandrivorans (Bsal): aktueller Stand in Deutschland. Z Feldherpetol 25:1–22

    Google Scholar 

  33. Daly JW (1998) Thirty years of discovering arthropod alkaloids in amphibian skin. J Nat Prod 61:162–172

    CAS  PubMed  Google Scholar 

  34. Daly JW, Spande TF (1986) Amphibian alkaloids: chemistry, pharmacology, and biology. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Wiley, New York

    Google Scholar 

  35. Daly JW, Myers W, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon 25:1023–1095

    CAS  PubMed  Google Scholar 

  36. Daly JW, Garrafo HM, Hall GFE, Cover JF Jr (1997) Absence of skin alkaloids in captive-raised Madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–1135

    CAS  PubMed  Google Scholar 

  37. Daly JW, Noimai N, Kongkathip B, Kongkathip N, Wilham JM, Garrafo HM, Kaneko T, Spande TF, Nimit Y, Nabhitabhata J, Chan-Ard T (2004) Biologically active substances from amphibians: preliminary studies on anurans from twenty-one genera of Thailand. Toxicon 44:805–815

    CAS  PubMed  Google Scholar 

  38. Daly JW, Spande TF, Garrafo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575

    CAS  PubMed  Google Scholar 

  39. Dean J, Aneshansley DJ, Edgerton HE, Eisner T (1990) Defensive spray of the bombardier beetle: a biological pulse jet. Science 248(4960):1219–1221

    CAS  PubMed  Google Scholar 

  40. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449:811–818

    CAS  PubMed  Google Scholar 

  41. Diamond G, Beckloff N, Weinberg A, Kirsch KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dietrich N (1999) Jahreszyklus der Feuersalamander (Salamandra salamandra) des Neißetales – Landkreis Löbau-Zittau. Elaphe 7(2):62–65

    Google Scholar 

  43. Dietrich N (2000) Der Schwarzspecht – ein Prädator unseres Feuersalamanders? Elaphe 8:65

    Google Scholar 

  44. Duellman WE, Trueb L (1994) Biology of amphibians. JHU, Baltimore

    Google Scholar 

  45. Eom J, Jung YR, Park D (2009) F-series prostaglandin function as sex pheromones in the Korean salamander, Hynobius leechii. Comp Biochem Physiol A Mol Integrat Physiol 154:61–69

    Google Scholar 

  46. Erjavec V, Lukanc B, Žel J (2017) Intoxication of a dog with alkaloids of the fire salamander. Med Weter 73:186–188

    Google Scholar 

  47. Escoubas P (2006) Mass spectrometry in toxinology: a 21st-century technology for the study of biopolymers from venoms. Toxicon 47:609–613

    CAS  PubMed  Google Scholar 

  48. Esterly CO (1904) The structure and regeneration of the poison glands of Plethodon. Univ Calif Publ Zool 1:227–268

    Google Scholar 

  49. Faust SE (1898) Beiträge zur Kenntniss des Samandarins. Arch Exp Pat Phyl 41:229–245

    Google Scholar 

  50. Feldmann R, Klewen R (1981) Feuersalamander Salamandra salamandra terrestris Lacépède, 1788. In: Feldmann R (ed) Die Amphibien und Reptilien Westfalens. Abhandlungen aus dem Landes museum für Naturkunde Münster 43:30–44

  51. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    CAS  PubMed  Google Scholar 

  52. Fleck J (2005) Feuersalamanderbiotope in der Türkei. Amphibia 4(1):16–21

    Google Scholar 

  53. Francis ETB (1934) The anatomy of the salamander. Clarendon, Oxford

    Google Scholar 

  54. Francke H, Partch R (1966) The chemistry of samandarone model compounds. J Med Chem 9(4):643–644

    Google Scholar 

  55. Freytag GE (1955) Feuersalamander und Alpensalamander. Wittenberg Lutherstadt (Ziemsen)

  56. Frisch K (1920) Über den Einfluss der Bodenfarbe auf die Fleckenzeichnung des Feuersalamanders. Biol Zentralblatt 40:390–414

    Google Scholar 

  57. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511

    CAS  PubMed  Google Scholar 

  58. Garcia-Paris M, Alcobendas M, Buckley D, Wake DB (2003) Dispersal of viviparity across contact zones in Iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57:129–143

    CAS  PubMed  Google Scholar 

  59. Gesner C (1669) Allgemeines Thier-Buch. Deutsche Übersetzung durch C. Forer, Frankfurt

    Google Scholar 

  60. Geßner O (1926) Über Amphibiengifte. Ber Ges Beförderung ges Naturwiss (Mahrburg/Lahn) 61:138

    Google Scholar 

  61. Geßner O (1928) Über die Wirkung der Krampfgifte Strychnin, Pikrotoxin und Samandarin. Arch Exp Pathol Pharmakol 129:261–270

    Google Scholar 

  62. Geßner O (1932) Die Wirkung der Krampfgifte Strychnin, Pikrotoxin und Samandarin auf glattmuskelige Organe. Arch Exp Pathol Pharmakol 167:244–250

    Google Scholar 

  63. Geßner O, Craemer K (1930) Zur Darstellung der Salamanderalkaloide aus dem Hautdrüsensekret von Salamandra maculosa. Arch Exp Pathol Pharmakol 152:229–237

    Google Scholar 

  64. Geßner O, Esser W (1935a) Über die analeptische Wirkung des Salamanderalkaloides Samandarin. Arch Exp Pathol Pharmakol 178:755–759

    Google Scholar 

  65. Geßner O, Esser W (1935b) Samandarin und eine Reihe von Umwandlungs- und Abbauprodukten des Samandarins. Arch Exp Pathol Pharmakol 179:639–645

    Google Scholar 

  66. Geßner O, Möllenhoff P (1932) Zur Pharmakologie der Salamander-Alkaloide. Arch Exp Pathol Pharmakol 1671:638–653

    Google Scholar 

  67. Geßner O, Urban G (1937) Weitere pharmakologische Untersuchungen zu Samandarin. Arch Exp Pathol Pharmakol 187:378–388

    Google Scholar 

  68. Glaubrecht M (1991) Giftschleuder Feuersalamander. Kosmos 2:12

    Google Scholar 

  69. Grant JB, Land B (2002) Transcutaneous amphibian stimulator (TAS): a device for the collection of amphibian skin secretions. Herpetol Rev 33:38–41

    Google Scholar 

  70. Greven H (1994) Der Feuersalamander. Das Fabeltier und das Objekt moderner zoologischer Forschung. In: Kräubig J (ed) Lurchi- dem Feuersalamander auf der Spur. Galerie der Stadt Kornwestheim, Kornwestheim

    Google Scholar 

  71. Greven H (1997) Zur Naturgeschichte des Feuersalamanders in Mitteleuropa. In: Landschaftsverband Rheinland (ed) Der Salamander - ein gar fürchterliches Thier. Rheinland Verlag GmbH, Köln

    Google Scholar 

  72. Grice EA, Segre JA (2013) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170

    Google Scholar 

  73. Günter M (1926) Tötung durch Salamandergift. Lacerta 1:3–4

    Google Scholar 

  74. Günther E (1998) Die Salamander des Tendi-Tals in Asturien/Nordspanien. Elaphe 6:96–97

    Google Scholar 

  75. Habermehl G (1963a) Partialsynthese und absolute Konfiguration des Samandaridins. Chem Ber 96:840–844

    CAS  Google Scholar 

  76. Habermehl G (1963b) Die Konstitution und Konfiguration des Samandaridins. Chem Ber 96:143–151

    CAS  Google Scholar 

  77. Habermehl G (1964a) Cholesterin und Cholesterinester aus dem Hautdrüsensecret von Salamandra maculosa taeinata. Liebigs Ann Chem 680:104–107

    CAS  Google Scholar 

  78. Habermehl G (1964b) O-Acetylsamandarin im Gift von Salamandra maculosa. Liebigs Ann Chem 679:164–167

    CAS  Google Scholar 

  79. Habermehl G (1966) Die Konstitution des Samandenons. Chem Ber 99:1439–1442

    CAS  Google Scholar 

  80. Habermehl G (1969) Chemistry and biochemistry of amphibian poisons. Naturwissenschaften 56(12):615–622

    CAS  PubMed  Google Scholar 

  81. Habermehl G (1994a) The biological relevance of Salamandra venom. Mertensiella 4:209–214

    Google Scholar 

  82. Habermehl G (1994b) Gift-Tiere und ihre Waffen, 5 Aufl. Springer. Berlin

    Google Scholar 

  83. Habermehl G (1995) Antimicrobial activity of amphibian venoms. Stud Nat Prod Chem 15:327–339

    CAS  Google Scholar 

  84. Habermehl G, Göttlicher S (1965) Die Konstitution und Konfiguration des Cycloneosamandions. Chem Ber 98:1–10

    CAS  Google Scholar 

  85. Habermehl G, Haaf G (1965) Cycloneosamandaridin, ein neues Nebenalkaloid aus Salamandra maculosa. Chem Ber 98:3001–3005

    CAS  Google Scholar 

  86. Habermehl G, Haaf A (1968) Cholesterin als Vorstufe in der Biosynthese der Salamanderalkaloide. Chem Ber 101:198–200

    CAS  PubMed  Google Scholar 

  87. Habermehl G, Haaf A (1969) Konstitution und Synthese des Samanins. Liebigs Ann Chem 722:155–161

    CAS  Google Scholar 

  88. Habermehl G, Preusser HJ (1969) Hemmung des Wachstums von Bakterien und Pilzen durch das Hautdrüsensekret von Salamandra maculosa. Z Naturforsch 24b:1599–1601

    Google Scholar 

  89. Habermehl G, Preusser HJ (1970) Antimikrobielle Aktivität von Amphibien-Hautdrüsen-sekreten. Z Naturforsch 25b:1451–1452

    Google Scholar 

  90. Habermehl G, Spiteller G (1967) Massenspektren der Salamander Alkaloide. Liebigs Ann Chem 706:213–222

    CAS  Google Scholar 

  91. Habermehl G, Vogel G (1969) Samandinine, a minor alkaloid from Salamandra maculosa Laur. Toxicon 7:163–164

    CAS  PubMed  Google Scholar 

  92. Hanifin CT, Gilly WF (2015) Evolutionary history of a complex adaptation: tetrodotoxin resistance in salamanders. Evolution 69:232–244

    CAS  PubMed  Google Scholar 

  93. Hara S, Oka K (1967) A Total synthesis of samandarone. J Am Chem Soc 89:1041–1042

    CAS  PubMed  Google Scholar 

  94. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CH, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KP (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824

    CAS  PubMed  Google Scholar 

  95. Harris RN, James TY, Lauer A, Simon MA, Patel A (2016) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. Ecohealth 3:53–56

    Google Scholar 

  96. Hayes AR, Piggott AM, Dalle K, Capon RJ (2009) Microbial biotransformation as a source of chemical diversity in cane toad steroid toxins. Bioorg Med Chem Lett 19:1790–1792

    CAS  PubMed  Google Scholar 

  97. Herbst C, Ascher F (1927) Beiträge zur Entwicklungsphysiologie der Färbung und Zeichnung der Tiere. III. Der Einfluss der Beleuchtung von unten auf das Farbkleid des Feuersalamanders. Wilhelm Roux’ Arch Entwickl Mech Org 112:1–59

    Google Scholar 

  98. Horter M, Greven M (1981) Zur relativen Genießbarkeit juveniler Feuersalamander, Salamandra salamandra (L.) (Amphibia, Urodela). Amphibia-Reptilia 2:15–21

    Google Scholar 

  99. Hostalka G (1984) Tod eines Jagdhundes durch Feuersalamander. Wild Hund 87(10):54–55

    Google Scholar 

  100. Janssenswillen S, Vandebergh W, Treer D, Willaert B, Maex M, Van Bocxlaer I, Bossuyt F (2015) Origin and diversification of a salamander sex pheromone system. Mol Biol Evol 32:472–480

    PubMed  Google Scholar 

  101. Joly J (1968) Données écologiques sur la salamandre tachetée Salamandra salamandra (L.). Ann Sci Nat Zool Biol Anim 19:301–366

    Google Scholar 

  102. Kabisch K, Belter H (1968) Das Verzehren von Amphibien durch Vögel. In: Abhandlungen und Berichte aus dem Staatlichen Museum für Tierkunde Dresden 29:191–227

  103. Kamalakkannan V, Salim AA, Capon RJ (2017) Microbiome-mediated biotransformation of cane toad bufagenins. J Nat Prod 80:2012–2017

    CAS  PubMed  Google Scholar 

  104. Kammerer P (1914a) Vererbung erzwungener Farbveränderungen. IV. Mitteilung: Das Farbkleid des Feuersalamanders (Salamandra maculosa Laurenti) in seiner Abhängigkeit von der Umwelt. Arch Entwickl Mech Org 36:4–193

    Google Scholar 

  105. Kammerer P (1914b) Aufklärung zu vorstehenden Bemerkungen des Herrn Professor Baur. Arch Entwickl Mech Org 38:684

    Google Scholar 

  106. Kershenbaum A, Blank L, Sinai I, Merilä J, Blaustein L, Templeton AR (2014) Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata. Oecologia 75:509–520. https://doi.org/10.1007/s00442-014-2924-8

    Article  Google Scholar 

  107. Kikuyama S, Yamamoto K, Iwata T, Toyoda F (2002) Peptide and protein pheromones in amphibians. Comp Biochem Physiol B Biochem Molec Biol 132:69–74

    Google Scholar 

  108. Koestler A (1971) The case of the midwife toad. Random House, New York

    Google Scholar 

  109. König E, Bininda-Emmonds ORP, Shaw C (2015) The diversity and evolution of anuran skin peptides. Peptides 63:96–117

    PubMed  Google Scholar 

  110. Kozorog M (2003) Salamander brandy: “a psychedelic drink” between media myth and practice of home alcohol distillation in Slovenia. Anthropol East Eur Rev 21:63–71

    Google Scholar 

  111. Kueneman J, Woodhams D, Van Treuren W, Archer W, Knight R, McKenzie V (2016) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J 10:934–944

    PubMed  Google Scholar 

  112. Linné C (1774). Vollständiges Natursystem. Deutsche Übersetzung durch P. C. S. Müller; 3. Theil: von den Amphibien. Nürnberg

  113. Lu CX, Nan KJ, Lei Y (2008) Agents from amphibians with anticancer properties. Anti-Cancer Drugs 19:931–939

    CAS  PubMed  Google Scholar 

  114. Luiselli L, Anibaldi C, Capula M (1995) The diet of juvenile adders, Vipera berus, in an alpine habitat. Amphibia-Reptilia 16:404–407

    Google Scholar 

  115. Luiselli L, Capula M, Shine R (1997) Food habits, growth rates, and reproductive biology of grass snakes, Natrix natrix (Colubridae) in the Italian alps. J Zool 241:371–380

    Google Scholar 

  116. Malkmus R (2005a) Lautäußerungen bei Salamandra salamandra gallaica. Z Feldherpetol 12:131–132

    Google Scholar 

  117. Malkmus R (2005b) Abwehrverhalten bei Salamandra salamandra gallaica und Salamandra salamandra crespoi. Z Feldherpetol 12:133–136

    Google Scholar 

  118. Manenti R, Denoël M, Ficetola GF (2013) Foraging plasticity favours adaption to new habitats in fire salamanders. Anim Behav 86:375–382

    Google Scholar 

  119. Manenti R, Pennati R, Ficetola GF (2015) Role of density and resource competition in determining aggressive behaviour in salamanders. J Zool 296:270–277

    Google Scholar 

  120. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomykosis in amphibians. Proc Natl Acad Sci U S A 110:15325–15329

    CAS  PubMed  PubMed Central  Google Scholar 

  121. McMenamin SK, Bain EJ, McCann AE, Patterson LB, Eom DS, Waller ZP, Hamill JV, Kuhlman JA, Eisen JS, Parichy DM (2014) Thyroid hormone-dependent adult pigment cell lineage and pattern in zebrafish. Science 345:1358–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mebs D (2010) Gifttiere. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  123. Mebs D, Pogoda W (2005) Variability of alkaloids in the skin secretions of the European fire salamander (Salamandra salamandra terrestris). Toxicon 45:603–606

    CAS  PubMed  Google Scholar 

  124. Merabet K, Sanchez E, Dahmana A, Bogaerts S, Donaire D, Steinfartz S, Joger U, Vences M, Karar M, Moali A (2016) Phylogeographic relationships and shallow mitochondrial divergence of Algerian populations of Salamandra algira. Amphibia-Reptilia 37:1–8

    Google Scholar 

  125. Michl E, Kaiser E (1963) Chemie und Biochemie der Amphibiengifte. Toxicon 1:175–228

    CAS  Google Scholar 

  126. Muzinic J, Rasajski J (1992) On food and feeding habits of the white stork, Ciconia ciconia ciconia, on the Central Balkans. Ökol Vögel 14:211–223

    Google Scholar 

  127. Nascetti G, Andreone F, Capula M, Bullini L (1988) A new Salamandra species from southwestern alps (Amphibia, Urodela, Salamandridae). Boll Mus Reg Sci Nat Torino 6:617–638

    Google Scholar 

  128. Natchev N, Handschuh S, Lukanov S, Tzankov N, Naumov B, Werneburg I (2016) Contributions of the functional morphology of caudate skulls: kinetic and akinetic forms. PeerJ 4:e2392. https://doi.org/10.7717/peerj.2392

    Article  PubMed  PubMed Central  Google Scholar 

  129. Netolitzky F (1904) Untersuchungen über den giftigen Bestandteil des Alpensalamanders, Salamandra atra Laur. Arch Exp Pathol Pharmakol 51:118–129

    CAS  Google Scholar 

  130. Obika M, Bagnara JT (1964) Pteridines as pigments in amphibians. Science 143:485–487

    CAS  PubMed  Google Scholar 

  131. Oka K, Hara S (1969) The synthesis of samane (desoxysamanine) and 17β-hydroxysamane. Tetrahedron Lett 10:1189–1191

    Google Scholar 

  132. Oka K, Hara S (1977) Denial of the proposed structure of salamander alkaloid, cycloneosamandaridine. Total synthesis of cycloneosamandione and supposed cycloneosamandaridine. J Am Chem Soc 99:3859–3860

    CAS  PubMed  Google Scholar 

  133. Oka K, Ike Y, Hara S (1969a) The skeletal synthesis of early proposed cycloneosamandione | the synthesis of 19-homosteroids. Tetrahedron Lett 10:4543–4546

    Google Scholar 

  134. Oka K, Ike Y, Hara S (1969b) The skeletal synthesis of early proposed cycloneosamandione || the synthesis of 19-retro-17β, 9-dihydroxy-3-aza-a-homo-5β-androstane. Tetrahedron Lett 10:4547–4550

    Google Scholar 

  135. Otto F (1885) Wunderglaube und Wirklichkeit. In Rücksicht auf seltsame Erscheinungen der Tierwelt sowie unerklärliche Vorgänge im Menschenleben. Fabelhafte Gestalten des Wahns in Volksglauben, Sage und Dichtung. Verlag Otto Spemer, Leipzig

    Google Scholar 

  136. Panagides N, Jackson TN, Ikonomopoulou MP, Arbuckle K, Pretzler R, Yang DC, Ali SA, Koludarov I, Dobson J, Sanker B, Asselin A, Santana RC, Hendrikx I, van der Ploeg H, Tai-A-Pin J, van den Bergh R, Kerkkamp HM, Vonk FJ, Naude A, Strydom MA, Jacobsz L, Dunstan N, Jaeger M, Hodgson WC, Miles J, Fry BG (2017) How the cobra got its flesh-eating venom: cytotoxicity as a defensive innovation and its co-evolution with hooding, aposematic marking, and spitting. Toxins (Basel) 9. https://doi.org/10.3390/toxins9030103

    PubMed Central  Google Scholar 

  137. Park ST, Collingwood AM, St-Hilaire S, Sheridan PP (2014) Inhibition of Batrachochytrium dendrobatidis caused by bacteria isolated from the skin of boreal toads, Anaxyrus (Bufo) boreas boreas, from Grand Teton National Park, Wyoming, USA. Microbiol Insights 7:1–8

    PubMed  PubMed Central  Google Scholar 

  138. Paulitsch P (1984) Tod eines Jagdhundes durch Feuersalamander. Wild Hund 87:35

    Google Scholar 

  139. Pezaro N, Rovelli V, Segev O, Templeton AR, Blaustein L (2017) Suspected rat predation oft he Near Eastern fire salamander (Salamandra infraimmaculata) by selective consumption of non toxic tissue. Zool Middle East 64:91–93

    Google Scholar 

  140. Phisalix-Picot M (1900) Researches embryologiques, histologiques et physilogiques sur les glandes a venin de la Salamandre terrestre. Paris Mus Hist Nat Bull 6:294–300

    Google Scholar 

  141. Preißler K, Pröhl H (2017) The effects of background coloration and dark spots on the risk of predation in poison frog models. Evol Ecol 31:683–694

    Google Scholar 

  142. Preusser HJ, Habermehl G, Sablofski M, Schmall-Haury D (1975) Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. Toxicon 13:285–288

    CAS  PubMed  Google Scholar 

  143. Raaymakers C, Verbrugghe E, Hernot S, Hellebuyck T, Betti C, Peleman C, Claeys M, Bert W, Cavaliers V, Ballet S, Martel A, Pasmans F, Roelants K (2017) Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nature. Communications 8:1495. https://doi.org/10.1038/s41467-017-01710-1

    CAS  Article  Google Scholar 

  144. Raaymakers C, Verbrugghe E, Stijlemans B, Martel A, Pasmans F, Roelants K (2018) The anuran skin peptide bradykinin mediates its own absorption across epithelial barriers of the digestive tract. Peptides 103:84–89

    CAS  PubMed  Google Scholar 

  145. Reinhardt T, Steinfartz S, Paetzold A, Weitere M (2013) Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies. Oecologia 173:281–291

    PubMed  Google Scholar 

  146. Riberon A, Miaud C, Grossenbacher K, Taberlet P (2001) Phylogeography of the alpine salamander, Salamandra atra (Salamandridae) and the influence of the Pleistocene climatic oscillations on population divergence. Mol Ecol 10:2555–2560

    CAS  PubMed  Google Scholar 

  147. Rivera X, Donaire-Barroso D, Arribas O (2014) Hipótesis sobre el origen y función del patrón de coloración y de las estrategias reproductivas en el género Salamandra Laurenti, 1768. Butll Soc Catalana Herpetol 21:75–92

    Google Scholar 

  148. Rodriguez A, Poth D, Schulz S, Vences M (2011) Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett 7:414–418

    CAS  PubMed  Google Scholar 

  149. Rodríguez A, Burgon JD, Lyra M, Irisarri I, Baurain D, Blaustein L, Göçmen B, Künzel S, Mable BK, Nolte AW, Veith M, Steinfartz S, Elmer KR, Philippe H, Vences M (2017) Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol Phylogenet Evol 115:16–26

    PubMed  Google Scholar 

  150. Rodriguez C, Rollins-Smith L, Ibáñez R, Durant-Archibold AA, Gutiérrez M (2017) Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). J Ethnopharmacol 198:235–254

    CAS  PubMed  Google Scholar 

  151. Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta Biomembr 1788:1593–1599

    CAS  Google Scholar 

  152. Rollins-Smith LA, Reinert LK, O’Leary CJ, Houston LE, Woodhams DC (2005) Antimicrobial peptide defenses in amphibian skin. Integr Comp Biol 45:137–142

    CAS  PubMed  Google Scholar 

  153. Roseghini M, Erspamer F, Severini C, Simmaco M (1989) Biogenic amines and active peptides in extracts of thirty-two European amphibian species. Comp Biochem Physiol 94:455–460

    CAS  Google Scholar 

  154. Ruxton GD, Sherrat TN, Speed MP (2004) Avoiding attack. Oxford University Press, Oxford

    Google Scholar 

  155. Sabino-Pinto J, Bletz M, Hendrix R, Perl RGB, Martel A, Pasmans F, Lötters S, Mutschmann F, Schmeller DS, Schmidt BR, Veith M, Wagner N, Vences M, Steinfartz S (2015) First detection of the emerging fungal pathogen Batrachochytrium salamandrivorans in Germany. Amphibia-Reptilia 36:411–416

    Google Scholar 

  156. Sanchez E, Bletz MC, Duntsch L, Bhuju S, Geffers R, Jarek M, Dohrmann AB, Tebbe CC, Steinfartz S, Vences M (2017) Cutaneous bacterial communities of a poisonous salamander: a perspective from life stages, body parts and environmental conditions. Microb Ecol 73(2):455–465

    CAS  PubMed  Google Scholar 

  157. Sanchez E, Küpfer E, Goedbloed DJ, Nolte AW, Lüddecke T, Schulz S, Vences M, Steinfartz S (2018a) Morphological and transcriptomic analyses reveal three discrete primary stages of postembryonic development in the common fire salamander, Salamandra salamandra. J Exp Zool B Mol Dev Evol 330(2):96–108.

    CAS  PubMed  Google Scholar 

  158. Sanchez E, Gippner S, Vences M, Preißler K, Hermanski IJ, Caspers BA, Krause ET, Steinfartz S, Kastrup FW (2018b) Automatic quantification of colour proportions in dorsal black-and-yellow coloured amphibians, tested on the fire salamander (Salamandra salamandra). Herpetol Notes 11:73–76

    Google Scholar 

  159. Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW (2002) Oribatid mites: a major dietary source for alkaloids in poison frogs. Proc Natl Acad Sci U S A 104:8885–8890

    Google Scholar 

  160. Sauer H, Weisbecker H (1994) Einheimische Schlangen als gelegentliche Verfolger des Feuersalamanders (Salamandra salamandra) – zwei Feldbeobachtungen. Nat Mus 124:349–350

    Google Scholar 

  161. Schindler H, Frank (1961) Tiere in Pharmazie und Medizin. Hippokrates, Stuttgart

    Google Scholar 

  162. Schmidt BR, Feldmann R, Schaub M (2005) Demographic processes underlying growth and decline in Salamandra salamandra. Conserv Biol 19:1149–1156

    Google Scholar 

  163. Schöpf C (1942) Die Konstitution des Samandarins. Liebigs Ann Chem 552:62–105

    Google Scholar 

  164. Schöpf C (1961) Die Konstitution der Salamander-Alkaloide. Experientia 17:285–328

    Google Scholar 

  165. Schöpf H (1992) Fabeltiere. VMA, Wiesbaden

    Google Scholar 

  166. Schöpf C, Braun W (1934) Über Samandarin, das Hauptalkaloid im Gift des Feuer- und Alpensalamanders. Liebigs Ann Chem 514:69–136

    Google Scholar 

  167. Schöpf C, Koch K (1942) Über Samandaron und Samandaridin, Nebenalkaloide im Gift des Feuer- und Alpensalamanders. Liebigs Ann Chem 552:37–61

    Google Scholar 

  168. Schöpf C, Möller OW (1960) Cycloneosamandion, ein neues Nebenalkaloid aus dem Feuersalamander (Salamandra maculosa Laur). Liebigs Ann Chem 633:127–156

    Google Scholar 

  169. Schöpf C, Blödorn HK, Klein D, Seitz G (1950) Zur Konstitution des Samandarins. Chem Ber 83:372–390

    Google Scholar 

  170. Schöpf C, Klein D, Hofmann E (1954) Die Darstellung von Dehydrierungs-Kohlenwasserstoffen aus Samandiol. Chem Ber 87:1638–1660

    Google Scholar 

  171. Seidel U, Gerhardt P (2016) Die Gattung Salamandra. Edition Chimaira, Frankfurt am Main

    Google Scholar 

  172. Servedio MR (2000) The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration. Evolution 54:751–763

    CAS  PubMed  Google Scholar 

  173. Shimizu Y (1976) Synthesis of samandarine-type alkaloids and analogues. J Org Chem 41:1930–1934

    CAS  Google Scholar 

  174. Skelhorn J, Halpin CG, Rowe C (2016) Learning about aposematic prey. Behav Ecol 27(4):955–964

    Google Scholar 

  175. Sousa LQ, Machado KD, Oliveira SF, Araújo LD, Monção-Filho ED, Melo-Cavalcante AA, Vieira-Júnior GM, Ferreira PM (2017) Bufadienolides from amphibians: a promising source of anticancer prototypes for radical innovation, apoptosis triggering and Na+/K+-ATPase inhibition. Toxicon 127:63–75

    PubMed  Google Scholar 

  176. Spitzen-van der Sluijs A, Martel A, Asselberghs J, Bales EK, Beukema W, Bletz MC, Dalbeck L, Goverse E, Kerres A, Kinet T, Kirst K, Laudelout A, Marin da Fonte LF, Nöllert A, Ohlhoff D, Sabino-Pinto J, Schmidt BR, Speybroeck J, Spikmans F, Steinfartz S, Veith M, Vences M, Wagner N, Pasmans F, Lötters S (2016) Expanding distribution of lethal amphibian fungus Batrachochytrium salamandrivorans in Europe. Emerg Infect Dis 22:1286–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Steinfartz S (2004) Salamandra- Feuer- und Alpensalamander. In: Böhme W (ed) Handbuch der Reptilien und Amphibien Europas (4:IIB). AULA, Wiebelsheim

    Google Scholar 

  178. Steinfartz S, Veith M, Tautz D (2000) Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of Central Europe from distinct source populations of Salamandra salamandra. Mol Ecol 9:397–410

    CAS  PubMed  Google Scholar 

  179. Steinfartz S, Weitere M, Tautz D (2007) Tracing the first step to speciation—ecological and genetic differentiation of a salamander population in a small forest. Mol Ecol 16:4550–4561

    CAS  PubMed  Google Scholar 

  180. Stegen G, Pasmans F, Schmidt BR, Rouffaer LO, Van Praet S, Schaub M, Canessa S, Laudelout A, Kinet T, Adriaensen C, Haesebrouck F, Bert W, Bossuyt F, Martel A (2017) Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544(7650):353–356

    CAS  PubMed  Google Scholar 

  181. Stokes AN, Williams BL, French SS (2012) An improved competetive inhibition enzymatic immunoassay method for tetrodotoxin quantification. Biol Proced Online 14:3

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Summers K, Clough ME (2001) The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proc Natl Acad Sci U S A 98:6227–6232

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Summers K, Speed MP, Blount JD, Stuckert AMM (2015) Are aposematic signals honest? Evol Biol 28:1583–1599

    CAS  Google Scholar 

  184. Thiesmeier B (2004) Der Feuersalamander. Laurenti, Bielefeld

    Google Scholar 

  185. Trevisan P (1982) A new subspecies of alpine salamanders. Boll Zool 49:235–239

    Google Scholar 

  186. Tsuruda K, Arakawa O, Kawatsu O, Hamano Y, Takatani T, Noguchi T (2002) Secretory glands of tetrodotoxin in the skin of the Japanese newt Cynops pyrrhogaster. Toxicon 40:131–136

    CAS  PubMed  Google Scholar 

  187. van Alphen JJM, Arntzen JW (2016) Paul Kammerer and the inheritance of acquired characteristics. Contrib Zool 85:457–470

    Google Scholar 

  188. Van Bellegem SM, Papa R, Ortiz-Zuazaga H, Hendrickx F, Jiggins CD, McMillan WO, Counterman BA (2017) Patternize: an R package for quantifying colour pattern variation. Methods Ecol Evol 9:390–398

    Google Scholar 

  189. Van Bocxlaer I, Maex M, Treer D, Janssenswillen S, Janssens R, Vandebergh W, Proost P, Bossuyt F (2016) Beyond sodefrin: evidence for a multi-component pheromone system in the model newt Cynops pyrrhogaster (Salamandridae). Sci Rep 6:21880

    PubMed  PubMed Central  Google Scholar 

  190. Velo-Anton G, Cordero-Rivera A (2011) Predation by invasive mammals on an insular viviparous population of Salamandra salamandra. Herpetol Notes 4:299–301

    Google Scholar 

  191. Velo-Anton G, Zamudio KR, Cordero-Rivera A (2012) Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108:410–418

    CAS  PubMed  Google Scholar 

  192. Vences M, Sanchez E, Hauswaldt SJ, Eikelmann D, Rodriguez A, Carranza S, Donaire D, Gehara M, Helfer V, Lötters S, Werner P, Schulz S, Steinfartz S (2014) Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae). Mol Phyl Evol 73:208–216

    CAS  Google Scholar 

  193. von Byern J, Mebs D, Heiss E, Dicke U, Wetjen O, Bakkegard K, Grunwald I, Wolbank S, Mühleder S, Gugerell A, Fuchs H, Nuernberger S (2017) Salamanders on the bench—a biocompatibility study of salamander skin secretions in cell cultures. Toxicon 135:24–32

    Google Scholar 

  194. Wang IJ, Shaffer HB (2008) Rapid color evolution in an aposematic species: a phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution 62:2742–2759

    CAS  PubMed  Google Scholar 

  195. Werner C, Himstedt W (1984) Eye accomodation during prey capture behaviour in fire salamanders (Salamandra salamandra L.). Behav Brain Res 12:69–73

    CAS  PubMed  Google Scholar 

  196. Winter HG (1991) Färbung und Zeichnung. In: Klewen R (ed) Die Landsalamander Europas, Teil 1. Die Gattungen Salamandra und Mertensiella, 2 Aufl. Ziemsen, Wittenberg Lutherstadt

  197. Wölfel E, Schöpf C, Weitz G, Habermehl G (1961) Die Konstitution und Konfiguration des Samandarins. Chem Ber 94:2361–2373

    Google Scholar 

  198. Wood FW, Sollers BG, Dragoo GA, Dragoo JW (2002) Volatile components in defensive spray of the hooded skunk, Mephitis macroura. J Chem Ecol 28(9):1865–1870

    CAS  PubMed  Google Scholar 

  199. Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, Davis LR, Schmidt BR, Bel C, Hodel S, Knight R, McKenzie V (2014) Interacting symbionts and immunity in the amphibian skin mucosome predicts disease risk and probiotic effectiveness. PLoS One 9:e96375. https://doi.org/10.1371/journal.pone.0096375

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  200. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, Flechas SV, Forman ME, Iannetta AA, Joyce MD, Rabemananjara F, Gratwicke B, Vences M, Minbiole KPC (2017) Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microbial Ecol 75:1049–1062. https://doi.org/10.1007/s00248-017-1095-7

    CAS  Article  Google Scholar 

  201. Yotsu M, Iorizzi M, Yasumoto T (1990) Distribution of tetrodotoxin, 6-epitetrodotoxin and 11-deoxytetrodotoxin in newts. Toxicon 28:238–241

    CAS  PubMed  Google Scholar 

  202. Yotsu-Yamashita M, Mebs D, Kwet A, Schneider M (2007) Tetrodotoxin and its analogue 6-epitetrodotoxin in newts (Triturus spp.: Urodela, Salamandridae) from southern Germany. Toxicon 50:306–309

    CAS  PubMed  Google Scholar 

  203. Yotsu-Yamashita M, Toennes SW, Mebs D (2017) Tetrodotoxin in Asian newts (Salamandridae). Toxicon 134:14–17

    CAS  PubMed  Google Scholar 

  204. Zalesky S (1866) Über das Samandarin. Das Gift der Salamandra maculata. Med chem Untersuch Hoppe-Seyler 1:85–116

    Google Scholar 

Download references

Acknowledgements

Robin Schmidt and Janosch Knepper provided the material for the illustration of the figure. We are grateful to Kathleen Preißler for her fruitful discussions and input and to Pedro Galán for the bibliographic information.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tim Lüddecke.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lüddecke, T., Schulz, S., Steinfartz, S. et al. A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra. Sci Nat 105, 56 (2018). https://doi.org/10.1007/s00114-018-1579-4

Download citation

Keywords

  • Amphibia
  • Salamandridae
  • Samandarine
  • Samandarone
  • Steroidal alkaloids
  • Aposematism
  • Batrachochytrium salamandrivorans