The Science of Nature

, 105:46 | Cite as

Floral colour change in Byrsonima variabilis (Malpighiaceae) as a visual cue for pollen but not oil foraging by oil-collecting bees

  • Brehna Teixeira de Melo
  • Theo Mota
  • Clemens Schlindwein
  • Yasmine Antonini
  • Reisla OliveiraEmail author
Original Paper


Pollinators search for multiple flora resources throughout their life cycle. Most studies, however, only assess how bees discriminate floral cues in the context of nectar foraging. In the present study, we sought to elucidate whether oil-collecting bees discriminate flowers of Byrsonima variabilis (Malpighiaceae) with petals of different colours when foraging for pollen or oil. As the colour of the standard petal changes during anthesis, we characterised the spectral reflectance patterns of flowers throughout anthesis and modelled chromatic perceptual space to determine how these colour patterns are perceived by bees. Through the quantification of flower pollen in the different phases, we found that the colour of the standard petal is an honest cue of the presence of pollen. Centridine bees preferentially visited flowers with a yellow (bee’s green) colour when searching for pollen, but indiscriminately visited flowers with different petal colours when searching for floral oil. We suggest that standard petals, in the species studied and others of the genus, like nectar guides, act as pollen guides, which oil-collecting females use to detect pollen-rich flowers. Moreover, they use different floral clues during foraging for different resources in the same host plant.


Visual signalling Pollination Multiple rewards Solitary bees Centridini 



We gratefully acknowledge Kátia Vieira and Ana Laura Dutra for their help with fieldwork. BM had grant from Minas Gerais Research Foundation (FAPEMIG), RO from Coordination for the Improvement of Higher Education Personnel (CAPES), CS and YA from National Council for Scientific and Technological Development (CNPq).

Funding information

This work received funds from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG—grant no. APQ-01700-14).

Supplementary material

114_2018_1572_MOESM1_ESM.pdf (83 kb)
ESM 1 (PDF 82 kb)


  1. Alves GGN, Sebastiani R (2015) Malpighiaceae na Reserva Biológica do Alto da Serra de Paranapiacaba, Santo André, SP, Brasil. Hoehnea 42:521–529. CrossRefGoogle Scholar
  2. Anderson WR (1981) Malpighiaceae. In: Maguire B (ed) The botany of the Guayana Highland—Part XI Mem. N. Y. Bot. Gard, vol 32, pp 21–305Google Scholar
  3. Arnold SE, Faruq S, Savolainen V, McOwan PW, Chittka L (2010) FReD: the floral reflectance database—a web portal for analyses of flower colour. PLoS One 5:e14287CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barônio GJ, Haleem MA, Marsaiolid AJ, Torezan-Silingardi HM (2017) Characterization of Malpighiaceae flower-visitor interactions in a Brazilian savannah: how do floral resources and visitor abundance change over time. Flora 234:126–134. CrossRefGoogle Scholar
  5. Barth FG, Biederman-Thorson MA (1985) Insects and flowers: the biology of a partnership. Princeton University Press, PrincetonGoogle Scholar
  6. Bezerra ES, Lopes AV, Machado IC (2009) Biologia reprodutiva de Byrsonima gardnerana A. Juss. (Malpighiaceae) e interações com abelhas Centris (Centridini) no nordeste do Brasil. Braz J Bot 32:95–108. CrossRefGoogle Scholar
  7. Brito VLG, Weynans K, Sazima M, Lunau K (2015) Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Front Plant Sci 6:362. PubMedPubMedCentralCrossRefGoogle Scholar
  8. Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 73–113Google Scholar
  9. Buchmann SL (1985) Bees use vibration to aid pollen collection from non-poricidal flowers. J Kansas Entomol Soc 58:517–525Google Scholar
  10. Burger H, Dötterl S, Ayasse M (2010) Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct Ecol 24:1234–1240CrossRefGoogle Scholar
  11. Cane JH (2016) Adult pollen diet essential for egg maturation by a solitary Osmia bee. J Insect Physiol 95:105–109CrossRefPubMedGoogle Scholar
  12. Carvalho AT, Dötterl S, Schlindwein C (2014) An aromatic volatile attracts oligolectic bee pollinators in an interdependent bee-plant relationship. J Chem Ecol 40:1126–1134. CrossRefPubMedGoogle Scholar
  13. Casper BB, La Pine TR (1984) Changes in corolla color and other floral characteristics in Cryptantha humilis (Boraginaceae): cues to discourage pollinators? Evolution 38:128–141. CrossRefPubMedGoogle Scholar
  14. Chittka L (1992) The color hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543Google Scholar
  15. Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators’ colour vision. J Comp Physiol A 171:171–181. CrossRefGoogle Scholar
  16. Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435. CrossRefPubMedGoogle Scholar
  17. Chittka L, Thomson JD (1997) Sensori-motor learning and its relevance for task specialization in bumble bees. Behav Ecol Sociobiol 41:385–398Google Scholar
  18. Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vis Res 34:1489–1508. CrossRefPubMedGoogle Scholar
  19. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology and plant evolution. Naturwissenchaften 86:361–377CrossRefGoogle Scholar
  20. Costa CBN, Costa JAS, Ramalho M (2006) Biologia reprodutiva de espécies simpátricas de Malpighiaceae em dunas costeiras da Bahia, Brasil. Braz J Bot 29:103–114. CrossRefGoogle Scholar
  21. Dobson HEM (1987) Role of flower and pollen aromas in host-plant recognition by solitary bees. Oecologia 72:618–623CrossRefPubMedGoogle Scholar
  22. Dorr JVN (1964) Supergene iron ores of Minas Gerais, Brazil. Econ Geol 59:1203–1240CrossRefGoogle Scholar
  23. Dötterl S, Milchreit K, Schäffler I (2011) Behavioural plasticity and sex differences in host finding of a specialized bee species. J Comp Physiol A 197:1119–1126. CrossRefGoogle Scholar
  24. Dyer AG (2006) Discrimination of flower colours in natural settings by the bumblebee species Bombus terrestris (Hymenoptera: Apidae). Entomol Gen 28:257–268. CrossRefGoogle Scholar
  25. Farzad M, Griesbach R, Weiss MR (2002) Floral color change in Viola cornuta L. (Violaceae): a model system to study regulation of anthocyanin production. Plant Sci 162:225–231. CrossRefGoogle Scholar
  26. Francener A, Almeida RF, Mamede MCH (2017) Taxonomic novelties in Byrsonima (Malpighiaceae) from the state of Minas Gerais, Brazil. Phytotaxa 291:133–140CrossRefGoogle Scholar
  27. Frisch KV (1972) Bees: their vision, chemical senses, and language. Cornell University Press, New YorkGoogle Scholar
  28. Gori DF (1983) Post-pollination phenomena and adaptative floral changes. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 31–49Google Scholar
  29. Gori DF (1989) Floral color change in Lupinus argenteus (Fabaceae): why should plants advertise the location of unrewarding flowers to pollinators? Evolution 43:870–881. CrossRefPubMedGoogle Scholar
  30. Heinrich B (1976) The foraging specializations of individual bumblebees. Ecol Monogr 46:105–128. CrossRefGoogle Scholar
  31. Heuschen B, Gumbert A, Lunau K (2005) A generalised mimicry system involving angiosperm flower colour, pollen and bumblebees' innate colour preferences. Plant Syst Evol 252:121–137. CrossRefGoogle Scholar
  32. Jacobi CM, Do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers Conserv 16:2185–2200. CrossRefGoogle Scholar
  33. Jesus BMV, Garófalo CA (2000) Nesting behaviour of Centris (Heterocentris) analis (Fabricius) in southeastern Brazil (Hymenoptera, Apidae, Centridini). Apidologie 31:503–515CrossRefGoogle Scholar
  34. Laverty TM, Plowright RC (1988) Flower handling by bumble bees: a comparison of specialists and generalists. Anim Behav 36:733–740CrossRefGoogle Scholar
  35. Leonard AS, Masek PJ (2014) A multisensory integration of colors and scents: insights from bees and flowers. J Comp Physiol A 200:463–474. CrossRefGoogle Scholar
  36. Lunau K (1991) Innate flower recognition in bumblebees (Bombus terrestris, B. lucorum; Apidae): optical signals from stamens as landing reaction releasers. Ethology 88:203–214CrossRefGoogle Scholar
  37. Lunau K (1996) Unidirectionality of floral colour changes. Plant Syst Evol 200:125–140CrossRefGoogle Scholar
  38. Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111. CrossRefGoogle Scholar
  39. Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19CrossRefGoogle Scholar
  40. Mamede MCH, Francener A (2015) Lista de Espécies da Flora do Brasil. In: Jard. Botânico do Rio Janeiro, RJ. Accessed 17 Jul 2017
  41. Mendes FN, Rêgo MMC, Albuquerque PMC (2011) Fenologia e biologia reprodutiva de duas espécies de Byrsonima Rich. (Malpighiaceae) em área de Cerrado no Nordeste do Brasil. Biota Neotrop 11:103–115. CrossRefGoogle Scholar
  42. Menzel R (1983) Neurobiology of learning and memory: the honeybee as a model system. Naturwissenschaften 70:504–511CrossRefPubMedGoogle Scholar
  43. Michener CD (2007) The bees of the world, 2nd. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  44. Milet-Pinheiro P, Ayasse M, Schlindwein C, Dobson HEM, Dötterl S (2012) Host location by visual and olfactory cues in an oligolectic bee: innate and learned behavior. Behav Ecol 23:531–538. CrossRefGoogle Scholar
  45. Müller F (1877) Flowers and insects. Nature 17:78–79. CrossRefGoogle Scholar
  46. Muth F, Papaj DR, Leonard AS (2015) Colour learning when foraging for nectar and pollen: bees learn two colours at once. Biol Lett 11:20150628. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Muth F, Papaj DR, Leonard AS (2016) Bees remember flowers for more than one reason: pollen mediates associative learning. Anim Behav 11:93–100. CrossRefGoogle Scholar
  48. Neff JL, Simpson BB (2017) Vogel’s great legacy: the oil flower and oil-collecting bee syndrome. Flora 232:104–116Google Scholar
  49. Nicholls E, Hempel de Ibarra N (2014) Bees associate colour cues with differences in pollen rewards. JEB 217:2783–2788.
  50. Nicholls E, Hempel de Ibarra N (2016) Assessment of pollen rewards by foraging bees. Funct Ecol 31:76–87.
  51. Núñez JA (1970) The relationship between sugar flow and foraging and recruiting behaviour of honey bees (Apis mellifera L.). Anim Behav 18:527–538. CrossRefGoogle Scholar
  52. Nuttman C, Willmer P (2003) How does insect visitation trigger floral colour change? Ecol Entomol 28:467–474. CrossRefGoogle Scholar
  53. Oliveira R, Schlindwein C (2009) Searching for a manageable pollinator for Acerola orchards: the solitary oil-collecting bee Centris analis (hymenoptera: Apidae: Centridini). J Econ Entomol 102:265–273. CrossRefPubMedGoogle Scholar
  54. Osche G (1979) Zur Evolution optischer Signale bei Blütenpflanzen. Biologie in unserer Zeit 9:161–170. CrossRefGoogle Scholar
  55. Osche G (1983) Optische Signale in der Koevolution von Pflanze und Tier. Ber Dtsch Bot Ges 96:1–27Google Scholar
  56. Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40. CrossRefPubMedGoogle Scholar
  57. R Core Team (2016) R: a language and environment for statistical computingGoogle Scholar
  58. Ramalho M, Silva M (2002) Flora oleífera e sua guilda de abelhas em uma comunidade de restinga tropical. Sitientibus Série Ciências Biológicas 2:34–43Google Scholar
  59. Reis MG, de Faria AD, Alves Dos Santos I, Amaral MCE, Marsaioli AJ (2007) Byrsonic acid—the clue to floral mimicry involving oil-producing flowers and oil-collecting bees. J Chem Ecol 33:1421–1429Google Scholar
  60. Renner SS, Schaefer H (2010) The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees. Philos Trans R Soc Lond Ser B Biol Sci 365:423–435. CrossRefGoogle Scholar
  61. Robertson C (1925) Heterotropic bees. Ecology 6:412–436Google Scholar
  62. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University PressGoogle Scholar
  63. Schäffler I, Balao F, Dötterl S (2012) Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species. Ann Bot 110:125–138CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schäffler I, Steiner KE, Haid M, van Berkel SS, Gerlach G, Johnson SD, Wessjohann L, Dötterl S (2015) Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci Rep 5:12779. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schlindwein C, Westerkamp C, Carvalho AT, Milet-Pinheiro P (2014) Visual signalling of nectar-offering flowers and specific morphological traits favour robust bee pollinators in the mass-flowering tree Handroanthus impetiginosus (Bignoniaceae). Bot J Linn Soc 176:396–407CrossRefGoogle Scholar
  66. Silveira FA, Melo GAR, Almeida EAB (2002) Abelhas Brasileiras: Sistemática e Identificação, 1st edn. Belo Horizonte, BrazilGoogle Scholar
  67. Simmons GC (1963) Canga caves in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Nat Speleol Soc Bull 25:66–72Google Scholar
  68. Steiner KE (1990) The Diascia (Scrophulariaceae) window: an orientation cue for oil-collecting bees. Bot J Linn Soc 102:175–195. CrossRefGoogle Scholar
  69. Vilas Boas JC, Fava WS, Laroca S, Sigrist MR (2013) Two sympatric Byrsonima species (Malpighiaceae) differ in phenological and reproductive patterns. Flora 208:360–369.
  70. Vinson SB, Williams HJ, Frankie GW, Shrum G (1997) Floral lipid chemistry of Byrsonima crassifolia (Malpigheaeceae) and a use of floral lipids by Centris bees (Hymenoptera: Apidae). Biotropica 29:76–83CrossRefGoogle Scholar
  71. Vinson SB, Frankie GW, Williams HJ (2006) Nest liquid resources of several cavity nesting bees in the genus Centris and the identification of a preservative, levulinic acid. J Chem Ecol 32:2013–2021CrossRefPubMedGoogle Scholar
  72. Vogel S (1974) Ölblumen und ölsammelnde Bienen. Abh Math Naturwiss Kl Akad Wiss Mainz 7:285–547Google Scholar
  73. Wainwright CM (1978) The floral biology and pollination ecology of two desert lupines. Bull Torrey Bot Club 105:24–38CrossRefGoogle Scholar
  74. Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354:227–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ecologia de Biomas Tropicais - Departamento de Biodiversidade Evolução e Meio AmbienteUniversidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Departamento de Biodiversidade Evolução e Meio AmbienteUniversidade Federal de Ouro PretoOuro PretoBrazil
  5. 5.Departamento de Biologia GeralUniversidade Federal de Minas as GeraisBelo HorizonteBrazil

Personalised recommendations